{"title":"Impact testing methods to simulate head impacts due to falls from standing height","authors":"Morteza Seidi , Vincent Caccese , Marzieh Memar","doi":"10.1016/j.medengphy.2025.104299","DOIUrl":null,"url":null,"abstract":"<div><div>Fall is one of the leading causes of traumatic brain injury (TBI), and thus, there is an increasing interest in validated tools and protective devices to prevent fall-related TBI. Developing head protective technologies for fall requires a reliable testing method to realistically mimic kinematics of head impacts due to fall to evaluate the injury attenuation of such protective headgears. The objective of this study is to recommend an appropriate and repeatable testing method for simulating fall-related head impacts due to standing height falls. To that end, several impact testing methods that commonly use to assess the efficacy of protective headgear were evaluated and compared. The four different test methods include: (1) a whole-body anthropomorphic test device (ATD) drop; (2) a drop-tower equipped with a Hybrid III head and neck assembly; (3) ASTM F429/F1446 standard; and (4) a linear impactor equipped with a Hybrid III head and neck assembly. Although the ATD drop system simulates fall-related head impacts realistically by considering the whole-body kinematics during falls from standing height, this method showed low repeatability. Among the three repeatable testing methods, only the drop tower with Hybrid III head and neck assembly showed statistically similar results to the ATD drop system for front and rear head impacts for all parameters examined in this study including peak linear acceleration, Head Injury Criterion, peak angular acceleration and peak angular velocity. The results suggested that drop-tower with Hybrid III head and neck assembly can realistically captured both translational and rotational motions of the head during impact due to standing height falls in a repeatable manner.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"136 ","pages":"Article 104299"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fall is one of the leading causes of traumatic brain injury (TBI), and thus, there is an increasing interest in validated tools and protective devices to prevent fall-related TBI. Developing head protective technologies for fall requires a reliable testing method to realistically mimic kinematics of head impacts due to fall to evaluate the injury attenuation of such protective headgears. The objective of this study is to recommend an appropriate and repeatable testing method for simulating fall-related head impacts due to standing height falls. To that end, several impact testing methods that commonly use to assess the efficacy of protective headgear were evaluated and compared. The four different test methods include: (1) a whole-body anthropomorphic test device (ATD) drop; (2) a drop-tower equipped with a Hybrid III head and neck assembly; (3) ASTM F429/F1446 standard; and (4) a linear impactor equipped with a Hybrid III head and neck assembly. Although the ATD drop system simulates fall-related head impacts realistically by considering the whole-body kinematics during falls from standing height, this method showed low repeatability. Among the three repeatable testing methods, only the drop tower with Hybrid III head and neck assembly showed statistically similar results to the ATD drop system for front and rear head impacts for all parameters examined in this study including peak linear acceleration, Head Injury Criterion, peak angular acceleration and peak angular velocity. The results suggested that drop-tower with Hybrid III head and neck assembly can realistically captured both translational and rotational motions of the head during impact due to standing height falls in a repeatable manner.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.