Integrating microplastic research in sustainable agriculture: Challenges and future directions for food production

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2025-02-05 DOI:10.1016/j.cpb.2025.100458
Marcelo Illanes , María-Trinidad Toro , Mauricio Schoebitz , Nelson Zapata , Diego A. Moreno , María Dolores López-Belchí
{"title":"Integrating microplastic research in sustainable agriculture: Challenges and future directions for food production","authors":"Marcelo Illanes ,&nbsp;María-Trinidad Toro ,&nbsp;Mauricio Schoebitz ,&nbsp;Nelson Zapata ,&nbsp;Diego A. Moreno ,&nbsp;María Dolores López-Belchí","doi":"10.1016/j.cpb.2025.100458","DOIUrl":null,"url":null,"abstract":"<div><div>In agroecosystems, plants are frequently subjected to a wide range of environmental stressors that have a substantial influence on plant physiology, crop performance, and food security. Abiotic stress responses to plant crop physiology and performance have been widely studied, but the co-occurrence of stressors, such as emerging contaminants (e.g., pharmaceuticals, plastic particles, or pesticides), combined with environmental conditions, remains understudied. Microplastics (MPs) have been identified as modifiers of plant physiology; therefore, these particles present a risk to the quality and safety of plant food production systems. One relevant question is how these emerging pollutants interact with the increasingly extreme environmental conditions of today. For example, evidence indicates that the interaction of MPs particles with elevated levels of ambient CO<sub>2</sub> can modify stomatal conductance. In addition, their interaction with high temperatures may induce increased oxidative stress, whereas drought conditions can adversely affect vegetative growth. Salinity has been shown to alter root development, and MP particles can enhance the adsorption of trace metals onto plant tissues, thereby compromising food safety and increasing health risks. Currently, the application of omics technologies, including genomics, transcriptomics, and metabolomics, offers novel insights into molecular mechanisms that enable the identification of specific biomarkers associated with MP exposure. Furthermore, machine learning algorithms can be employed to analyze complex datasets, enhancing our ability to predict the impacts of MPs on plant health and crop performance under different environmental conditions. These results are significant for agricultural practices and policy formulation. As the prevalence of MPs in the environment continues to escalate, policymakers should address the potential risks these contaminants constitute to food safety and agricultural sustainability. This review compiles and synthesizes the most recent evidence regarding the impact of various stressors on crop quality and performance, with a particular emphasis on the interactions involving different plastic particles present in the environment and evaluates their potential risks to food safety and environmental resilience.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"42 ","pages":"Article 100458"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221466282500026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In agroecosystems, plants are frequently subjected to a wide range of environmental stressors that have a substantial influence on plant physiology, crop performance, and food security. Abiotic stress responses to plant crop physiology and performance have been widely studied, but the co-occurrence of stressors, such as emerging contaminants (e.g., pharmaceuticals, plastic particles, or pesticides), combined with environmental conditions, remains understudied. Microplastics (MPs) have been identified as modifiers of plant physiology; therefore, these particles present a risk to the quality and safety of plant food production systems. One relevant question is how these emerging pollutants interact with the increasingly extreme environmental conditions of today. For example, evidence indicates that the interaction of MPs particles with elevated levels of ambient CO2 can modify stomatal conductance. In addition, their interaction with high temperatures may induce increased oxidative stress, whereas drought conditions can adversely affect vegetative growth. Salinity has been shown to alter root development, and MP particles can enhance the adsorption of trace metals onto plant tissues, thereby compromising food safety and increasing health risks. Currently, the application of omics technologies, including genomics, transcriptomics, and metabolomics, offers novel insights into molecular mechanisms that enable the identification of specific biomarkers associated with MP exposure. Furthermore, machine learning algorithms can be employed to analyze complex datasets, enhancing our ability to predict the impacts of MPs on plant health and crop performance under different environmental conditions. These results are significant for agricultural practices and policy formulation. As the prevalence of MPs in the environment continues to escalate, policymakers should address the potential risks these contaminants constitute to food safety and agricultural sustainability. This review compiles and synthesizes the most recent evidence regarding the impact of various stressors on crop quality and performance, with a particular emphasis on the interactions involving different plastic particles present in the environment and evaluates their potential risks to food safety and environmental resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
RTR_Lite_MobileNetV2: A lightweight and efficient model for plant disease detection and classification ABA-regulated JAZ1 suppresses phytoalexin biosynthesis by binding GmNAC42-1 in soybean Chitosan induces salicylic acid and methyl salicylate in banana plants and reduces colonisation by Fusarium oxysporum f. sp. cubense TR4 Integrating microplastic research in sustainable agriculture: Challenges and future directions for food production AI-enhanced 3D-QSAR screening of fragment-based novel designed molecules targeting Phalaris minor ACCase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1