S. Rajaprakash , C. Bagath Basha , C. Sunitha Ram , I. Ameethbasha , V. Subapriya , R. Sofia
{"title":"Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems","authors":"S. Rajaprakash , C. Bagath Basha , C. Sunitha Ram , I. Ameethbasha , V. Subapriya , R. Sofia","doi":"10.1016/j.ibmed.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.</div><div>This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100213"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122500016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.
This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.