Anatomically accurate 3D printed prosthetic incus for ossicular chain reconstruction

Q1 Computer Science Bioprinting Pub Date : 2025-01-21 DOI:10.1016/j.bprint.2025.e00393
Masoud Mohseni-Dargah , Christopher Pastras , Payal Mukherjee , Kai Cheng , Khosro Khajeh , Mohsen Asadnia
{"title":"Anatomically accurate 3D printed prosthetic incus for ossicular chain reconstruction","authors":"Masoud Mohseni-Dargah ,&nbsp;Christopher Pastras ,&nbsp;Payal Mukherjee ,&nbsp;Kai Cheng ,&nbsp;Khosro Khajeh ,&nbsp;Mohsen Asadnia","doi":"10.1016/j.bprint.2025.e00393","DOIUrl":null,"url":null,"abstract":"<div><div>Middle ear disease often leads to ossicular erosion, impairing auditory function and frequently requiring ossicular chain reconstruction (OCR) for hearing restoration. Columella-type prostheses, commonly used in OCR, have shown limited success due to issues such as displacement and extrusion, highlighting the need for more effective solutions. This study introduces a 3D-printed prosthesis anatomically resembling the human incus bone, referred to as the titanium prosthetic incus, as a potential device for OCR. Utilising Finite Element Analysis (FEA), CT imaging, and 3D printing, the prosthesis was numerically evaluated, fabricated, and experimentally tested to assess its mechanical performance and anatomical fit. The prosthetic incus demonstrated ossicular vibration comparable to healthy control ears, effectively transmitting sound energy to the inner ear. The results revealed that the prosthetic incus offers superior sound transmission performance, particularly at low frequencies (below 1000 Hz), when compared to the PORP, with similar performance at higher frequencies. Additionally, the prosthetic incus has the potential to improve overall stability over traditional PORP devices, with a reduced risk of displacement due to its precise anatomical fitting. This study also suggests that the approach of contralateral imaging and individualised 3D printing enhances the customisation and accuracy of OCR procedures, potentially reducing operative time and improving long-term outcomes. Furthermore, the cost-effective nature of 3D printing makes this solution both clinically viable and scalable. This innovative technique holds promise for advancing OCR by providing a durable, patient-specific prosthetic option that enhances sound transmission and surgical success rates for patients with middle ear ossicular erosion.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"46 ","pages":"Article e00393"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Middle ear disease often leads to ossicular erosion, impairing auditory function and frequently requiring ossicular chain reconstruction (OCR) for hearing restoration. Columella-type prostheses, commonly used in OCR, have shown limited success due to issues such as displacement and extrusion, highlighting the need for more effective solutions. This study introduces a 3D-printed prosthesis anatomically resembling the human incus bone, referred to as the titanium prosthetic incus, as a potential device for OCR. Utilising Finite Element Analysis (FEA), CT imaging, and 3D printing, the prosthesis was numerically evaluated, fabricated, and experimentally tested to assess its mechanical performance and anatomical fit. The prosthetic incus demonstrated ossicular vibration comparable to healthy control ears, effectively transmitting sound energy to the inner ear. The results revealed that the prosthetic incus offers superior sound transmission performance, particularly at low frequencies (below 1000 Hz), when compared to the PORP, with similar performance at higher frequencies. Additionally, the prosthetic incus has the potential to improve overall stability over traditional PORP devices, with a reduced risk of displacement due to its precise anatomical fitting. This study also suggests that the approach of contralateral imaging and individualised 3D printing enhances the customisation and accuracy of OCR procedures, potentially reducing operative time and improving long-term outcomes. Furthermore, the cost-effective nature of 3D printing makes this solution both clinically viable and scalable. This innovative technique holds promise for advancing OCR by providing a durable, patient-specific prosthetic option that enhances sound transmission and surgical success rates for patients with middle ear ossicular erosion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
Structural, mechanical and biomedical properties of 3D-printed Cu-doped Fe3O4/58S bioactive glass/polycaprolactone composite scaffold for bone tissue regeneration 3D-printed PLA/Fe3O4/MgO hybrid composite scaffolds with improved properties FK506 binding protein like, FKBPL, as a novel therapeutic target in 2D and 3D bioprinted, models of cardiac fibrosis Nanocomposite hydrogel-based bioinks composed of a fucose-rich polysaccharide and nanocellulose fibers for 3D-bioprinting applications 4D printing in skin tissue engineering: A revolutionary approach to enhance wound healing and combat infections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1