Razvan Raducu, Alain Villagrasa-Labrador, Ricardo J. Rodríguez, Pedro Álvarez
{"title":"MALVADA: A framework for generating datasets of malware execution traces","authors":"Razvan Raducu, Alain Villagrasa-Labrador, Ricardo J. Rodríguez, Pedro Álvarez","doi":"10.1016/j.softx.2025.102082","DOIUrl":null,"url":null,"abstract":"<div><div>Malware attacks have been growing steadily in recent years, making more sophisticated detection methods necessary. These approaches typically rely on analyzing the behavior of malicious applications, for example by examining execution traces that capture their runtime behavior. However, many existing execution trace datasets are simplified, often resulting in the omission of relevant contextual information, which is essential to capture the full scope of a malware sample’s behavior. This paper introduces MALVADA, a flexible framework designed to generate extensive datasets of execution traces from Windows malware. These traces provide detailed insights into program behaviors and help malware analysts to classify a malware sample. MALVADA facilitates the creation of large datasets with minimal user effort, as demonstrated by the WinMET dataset, which includes execution traces from approximately 10,000 Windows malware samples.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"30 ","pages":"Article 102082"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711025000494","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Malware attacks have been growing steadily in recent years, making more sophisticated detection methods necessary. These approaches typically rely on analyzing the behavior of malicious applications, for example by examining execution traces that capture their runtime behavior. However, many existing execution trace datasets are simplified, often resulting in the omission of relevant contextual information, which is essential to capture the full scope of a malware sample’s behavior. This paper introduces MALVADA, a flexible framework designed to generate extensive datasets of execution traces from Windows malware. These traces provide detailed insights into program behaviors and help malware analysts to classify a malware sample. MALVADA facilitates the creation of large datasets with minimal user effort, as demonstrated by the WinMET dataset, which includes execution traces from approximately 10,000 Windows malware samples.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.