Annealing-free fluoropolymer protective layer for mitigating snail trails in crystalline silicon photovoltaic modules

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-02-08 DOI:10.1016/j.solmat.2025.113473
Jaehwan Ko , Yong-Jin Kim , Chungil Kim , Suwoon Lee , Jiwon Song , Hee-eun Song , Hyung-Jun Song
{"title":"Annealing-free fluoropolymer protective layer for mitigating snail trails in crystalline silicon photovoltaic modules","authors":"Jaehwan Ko ,&nbsp;Yong-Jin Kim ,&nbsp;Chungil Kim ,&nbsp;Suwoon Lee ,&nbsp;Jiwon Song ,&nbsp;Hee-eun Song ,&nbsp;Hyung-Jun Song","doi":"10.1016/j.solmat.2025.113473","DOIUrl":null,"url":null,"abstract":"<div><div>Snail trail faults, caused by the reaction between the silver electrodes of crystalline silicon (c-Si) photovoltaic (PV) cells and various chemicals, lead to electrode disconnection, performance degradation, and localized heating. This study aimed to develop stable c-Si PV modules by applying two different room-temperature processed protective layers: cyclic transparent optical polymer (CYTOP) and perhydropolysilazane (PHPS). Both coatings are designed to prevent acid-induced reactions at the cell's electrodes. After 3 min of direct exposure to nitric acid, c-Si PV cells with protective coatings retained 75 % of their electrode height and performance, while 66 % of electrodes without protective layers were corroded. As a result, the series resistance of uncoated c-Si PV cells increased more than tenfold, whereas cells with PHPS and CYTOP coatings exhibited only a twofold increase. A 1000-h damp heat test of the encapsulated c-Si PV cells revealed that CYTOP effectively suppressed electrode degradation and preserved its shape, outperforming encapsulated uncoated cells. While the PHPS film demonstrated excellent protective properties at the cell level, its performance at the module level was hindered by poor adhesion between the encapsulant and the cell, leading to delamination. Therefore, a thin layer of CYTOP shows strong potential for protecting c-Si PV modules from acid-related degradation during operation. This work offers valuable insights for designing more reliable PV modules.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"283 ","pages":"Article 113473"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825000741","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Snail trail faults, caused by the reaction between the silver electrodes of crystalline silicon (c-Si) photovoltaic (PV) cells and various chemicals, lead to electrode disconnection, performance degradation, and localized heating. This study aimed to develop stable c-Si PV modules by applying two different room-temperature processed protective layers: cyclic transparent optical polymer (CYTOP) and perhydropolysilazane (PHPS). Both coatings are designed to prevent acid-induced reactions at the cell's electrodes. After 3 min of direct exposure to nitric acid, c-Si PV cells with protective coatings retained 75 % of their electrode height and performance, while 66 % of electrodes without protective layers were corroded. As a result, the series resistance of uncoated c-Si PV cells increased more than tenfold, whereas cells with PHPS and CYTOP coatings exhibited only a twofold increase. A 1000-h damp heat test of the encapsulated c-Si PV cells revealed that CYTOP effectively suppressed electrode degradation and preserved its shape, outperforming encapsulated uncoated cells. While the PHPS film demonstrated excellent protective properties at the cell level, its performance at the module level was hindered by poor adhesion between the encapsulant and the cell, leading to delamination. Therefore, a thin layer of CYTOP shows strong potential for protecting c-Si PV modules from acid-related degradation during operation. This work offers valuable insights for designing more reliable PV modules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Surface engineering for enhanced perovskite solar cells: Fullerene-mediated trap state formation on CsPbI3 (001) surface Annealing-free fluoropolymer protective layer for mitigating snail trails in crystalline silicon photovoltaic modules Design and key thermo-physical properties of NaNO3-KNO3-Na2CO3-NaCl with high thermal stability for thermal energy storage Dual-chamber photocatalytic fuel cell utilizing ZIF-67/PPy composite for enhanced polyvinyl alcohol degradation Suppression of the shunting-type potential induced degradation (PID-s) through ion exchange on soda lime silicate glasses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1