Magnetohydrodynamic nanofluids flow and heat transfer with radiative heat flux and exothermic chemical reactions

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2025-02-07 DOI:10.1016/j.ijft.2025.101114
Md. Mehedi Hasan , M.J. Uddin , Salah A. Faroughi
{"title":"Magnetohydrodynamic nanofluids flow and heat transfer with radiative heat flux and exothermic chemical reactions","authors":"Md. Mehedi Hasan ,&nbsp;M.J. Uddin ,&nbsp;Salah A. Faroughi","doi":"10.1016/j.ijft.2025.101114","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluids are highly effective in optimizing thermal management in engineering systems. The complex and multifaceted properties of nanofluids require in-depth exploration that transcends their immediate technological and environmental applications. The exothermic chemical reactions and fundamental attributes of nanofluids have intricate mechanisms to advance flow and heat transfer. To understand the mechanisms and challenges associated with chemical reactions in nanofluids, this study investigates the flow dynamics and heat transfer in a nanofluid-filled annulus formed between a square and a circle, considering the effects of radiative heat flux, magnetohydrodynamics (MHD), and exothermic chemical reactions governed by Arrhenius kinetics. The finite element method is employed to solve the governing equations, and the accuracy of the numerical scheme is confirmed against published works. The distribution of velocity magnitude, isotherms, vorticity function, and Nusselt number are examined across a wide range of critical parameters for the copper oxide-water nanofluid. The current study also displays the heat transfer enhancement for 42 nanofluids. The results indicate that, for the copper oxide-water nanofluid, both the thermal Rayleigh number and the exothermic chemical reaction parameter significantly impact the convective flow. The average Nusselt number exhibits an increasing trend with rising Frank–Kamenetskii and Rayleigh numbers but follows a decreasing pattern with an increase in the radiation parameter. Higher Frank–Kamenetskii numbers, in conjunction with reduced radiation parameters, significantly enhance heat transfer. The Nusselt number decreases as the magnetic field intensity and the radius of the inner circle of the annulus increase. The optimal average Nusselt number is achieved with a <span><math><mrow><mn>45</mn><mo>°</mo><mo>−</mo><mn>45</mn><mo>°</mo><mo>−</mo><mn>90</mn><mo>°</mo></mrow></math></span> magnetic field orientation and a nanoparticle volume fraction of 3%. Copper oxide-water nanofluid shows a slightly higher average Nusselt number than the other nanofluids studied.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101114"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272500062X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluids are highly effective in optimizing thermal management in engineering systems. The complex and multifaceted properties of nanofluids require in-depth exploration that transcends their immediate technological and environmental applications. The exothermic chemical reactions and fundamental attributes of nanofluids have intricate mechanisms to advance flow and heat transfer. To understand the mechanisms and challenges associated with chemical reactions in nanofluids, this study investigates the flow dynamics and heat transfer in a nanofluid-filled annulus formed between a square and a circle, considering the effects of radiative heat flux, magnetohydrodynamics (MHD), and exothermic chemical reactions governed by Arrhenius kinetics. The finite element method is employed to solve the governing equations, and the accuracy of the numerical scheme is confirmed against published works. The distribution of velocity magnitude, isotherms, vorticity function, and Nusselt number are examined across a wide range of critical parameters for the copper oxide-water nanofluid. The current study also displays the heat transfer enhancement for 42 nanofluids. The results indicate that, for the copper oxide-water nanofluid, both the thermal Rayleigh number and the exothermic chemical reaction parameter significantly impact the convective flow. The average Nusselt number exhibits an increasing trend with rising Frank–Kamenetskii and Rayleigh numbers but follows a decreasing pattern with an increase in the radiation parameter. Higher Frank–Kamenetskii numbers, in conjunction with reduced radiation parameters, significantly enhance heat transfer. The Nusselt number decreases as the magnetic field intensity and the radius of the inner circle of the annulus increase. The optimal average Nusselt number is achieved with a 45°45°90° magnetic field orientation and a nanoparticle volume fraction of 3%. Copper oxide-water nanofluid shows a slightly higher average Nusselt number than the other nanofluids studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Magnetohydrodynamic nanofluids flow and heat transfer with radiative heat flux and exothermic chemical reactions Experimental investigation of the effect of the offset ratio on the flow characteristics and heat transfer behaviour of a wall-bounded dual jet flow Modeling of dissolution phenomena in Cu-Cl Cycle for hydrogen production Influence of alcohol blend fuels on performance and noise emission in spark ignition engine Experimental assessment of the effects of water quality and PV panel orientation on green hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1