DeepTrace: Learning to Optimize Contact Tracing in Epidemic Networks With Graph Neural Networks

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2025-02-06 DOI:10.1109/TSIPN.2025.3530346
Chee Wei Tan;Pei-Duo Yu;Siya Chen;H. Vincent Poor
{"title":"DeepTrace: Learning to Optimize Contact Tracing in Epidemic Networks With Graph Neural Networks","authors":"Chee Wei Tan;Pei-Duo Yu;Siya Chen;H. Vincent Poor","doi":"10.1109/TSIPN.2025.3530346","DOIUrl":null,"url":null,"abstract":"Digital contact tracing aims to curb epidemics by identifying and mitigating public health emergencies through technology. Backward contact tracing, which tracks the sources of infection, proved crucial in places like Japan for identifying COVID-19 infections from superspreading events. This paper presents a novel perspective on digital contact tracing by modeling it as an online graph exploration problem, framing forward and backward tracing strategies as maximum-likelihood estimation tasks that leverage iterative sampling of epidemic network data. The challenge lies in the combinatorial complexity and rapid spread of infections. We introduce <italic>DeepTrace</i>, an algorithm based on a Graph Neural Network that iteratively updates its estimations as new contact tracing data is collected, learning to optimize the maximum likelihood estimation by utilizing topological features to accelerate learning and improve convergence. The contact tracing process combines either BFS or DFS to expand the network and trace the infection source, ensuring efficient real-time exploration. Additionally, the GNN model is fine-tuned through a two-phase approach: pre-training with synthetic networks to approximate likelihood probabilities and fine-tuning with high-quality data to refine the model. Using COVID-19 variant data, we illustrate that <italic>DeepTrace</i> surpasses current methods in identifying superspreaders, providing a robust basis for a scalable digital contact tracing strategy.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"97-113"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10876576/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Digital contact tracing aims to curb epidemics by identifying and mitigating public health emergencies through technology. Backward contact tracing, which tracks the sources of infection, proved crucial in places like Japan for identifying COVID-19 infections from superspreading events. This paper presents a novel perspective on digital contact tracing by modeling it as an online graph exploration problem, framing forward and backward tracing strategies as maximum-likelihood estimation tasks that leverage iterative sampling of epidemic network data. The challenge lies in the combinatorial complexity and rapid spread of infections. We introduce DeepTrace, an algorithm based on a Graph Neural Network that iteratively updates its estimations as new contact tracing data is collected, learning to optimize the maximum likelihood estimation by utilizing topological features to accelerate learning and improve convergence. The contact tracing process combines either BFS or DFS to expand the network and trace the infection source, ensuring efficient real-time exploration. Additionally, the GNN model is fine-tuned through a two-phase approach: pre-training with synthetic networks to approximate likelihood probabilities and fine-tuning with high-quality data to refine the model. Using COVID-19 variant data, we illustrate that DeepTrace surpasses current methods in identifying superspreaders, providing a robust basis for a scalable digital contact tracing strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
DeepTrace: Learning to Optimize Contact Tracing in Epidemic Networks With Graph Neural Networks Label Guided Graph Optimized Convolutional Network for Semi-Supervised Learning Event-Triggered Data-Driven Distributed LFC Using Controller-Dynamic-Linearization Method Robust Time-Varying Graph Signal Recovery for Dynamic Physical Sensor Network Data A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1