{"title":"DeepTrace: Learning to Optimize Contact Tracing in Epidemic Networks With Graph Neural Networks","authors":"Chee Wei Tan;Pei-Duo Yu;Siya Chen;H. Vincent Poor","doi":"10.1109/TSIPN.2025.3530346","DOIUrl":null,"url":null,"abstract":"Digital contact tracing aims to curb epidemics by identifying and mitigating public health emergencies through technology. Backward contact tracing, which tracks the sources of infection, proved crucial in places like Japan for identifying COVID-19 infections from superspreading events. This paper presents a novel perspective on digital contact tracing by modeling it as an online graph exploration problem, framing forward and backward tracing strategies as maximum-likelihood estimation tasks that leverage iterative sampling of epidemic network data. The challenge lies in the combinatorial complexity and rapid spread of infections. We introduce <italic>DeepTrace</i>, an algorithm based on a Graph Neural Network that iteratively updates its estimations as new contact tracing data is collected, learning to optimize the maximum likelihood estimation by utilizing topological features to accelerate learning and improve convergence. The contact tracing process combines either BFS or DFS to expand the network and trace the infection source, ensuring efficient real-time exploration. Additionally, the GNN model is fine-tuned through a two-phase approach: pre-training with synthetic networks to approximate likelihood probabilities and fine-tuning with high-quality data to refine the model. Using COVID-19 variant data, we illustrate that <italic>DeepTrace</i> surpasses current methods in identifying superspreaders, providing a robust basis for a scalable digital contact tracing strategy.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"97-113"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10876576/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Digital contact tracing aims to curb epidemics by identifying and mitigating public health emergencies through technology. Backward contact tracing, which tracks the sources of infection, proved crucial in places like Japan for identifying COVID-19 infections from superspreading events. This paper presents a novel perspective on digital contact tracing by modeling it as an online graph exploration problem, framing forward and backward tracing strategies as maximum-likelihood estimation tasks that leverage iterative sampling of epidemic network data. The challenge lies in the combinatorial complexity and rapid spread of infections. We introduce DeepTrace, an algorithm based on a Graph Neural Network that iteratively updates its estimations as new contact tracing data is collected, learning to optimize the maximum likelihood estimation by utilizing topological features to accelerate learning and improve convergence. The contact tracing process combines either BFS or DFS to expand the network and trace the infection source, ensuring efficient real-time exploration. Additionally, the GNN model is fine-tuned through a two-phase approach: pre-training with synthetic networks to approximate likelihood probabilities and fine-tuning with high-quality data to refine the model. Using COVID-19 variant data, we illustrate that DeepTrace surpasses current methods in identifying superspreaders, providing a robust basis for a scalable digital contact tracing strategy.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.