Microgravity Control of a Free Surface in Elliptical Containers Via Thermocapillary Flows

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2025-02-07 DOI:10.1007/s12217-025-10165-9
Ignacio Jiménez Blanco, Pablo Salgado Sánchez, Dan Gligor, Andriy Borshchak Kachalov, Ali Arshadi
{"title":"Microgravity Control of a Free Surface in Elliptical Containers Via Thermocapillary Flows","authors":"Ignacio Jiménez Blanco,&nbsp;Pablo Salgado Sánchez,&nbsp;Dan Gligor,&nbsp;Andriy Borshchak Kachalov,&nbsp;Ali Arshadi","doi":"10.1007/s12217-025-10165-9","DOIUrl":null,"url":null,"abstract":"<div><p>We present here an extensive analysis of the free surface dynamics driven by the thermocapillary effect in half-filled elliptical containers in microgravity. Depending on the cell ellipticity <span>\\(\\delta \\)</span>, which selects the preferred static equilibrium via surface energy, and on the applied thermal forcing <span>\\(\\Delta T\\)</span>, interesting dynamics are found. Simulations show that the steady, thermally-driven position of the interface — perpendicular to <span>\\(\\Delta T\\)</span> — undergoes a pitchfork bifurcation at a critical <span>\\(\\delta _\\textrm{cr}\\)</span> that breaks the vertical reflection symmetry of the system. These results are supported by (leading order) estimates of the opposing thermocapillary and surface tension forces, predicting the linear dependence of <span>\\(\\delta _\\textrm{cr}\\)</span> on <span>\\(\\Delta T\\)</span>. Finally, the free surface relaxation after switching off the thermal control is explored. As a whole, the present analysis indicates that one can combine thermocapillary flows and an adequate cell design to manipulate and control fluids in microgravity, with potential in a wide variety of applications.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-025-10165-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-025-10165-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

We present here an extensive analysis of the free surface dynamics driven by the thermocapillary effect in half-filled elliptical containers in microgravity. Depending on the cell ellipticity \(\delta \), which selects the preferred static equilibrium via surface energy, and on the applied thermal forcing \(\Delta T\), interesting dynamics are found. Simulations show that the steady, thermally-driven position of the interface — perpendicular to \(\Delta T\) — undergoes a pitchfork bifurcation at a critical \(\delta _\textrm{cr}\) that breaks the vertical reflection symmetry of the system. These results are supported by (leading order) estimates of the opposing thermocapillary and surface tension forces, predicting the linear dependence of \(\delta _\textrm{cr}\) on \(\Delta T\). Finally, the free surface relaxation after switching off the thermal control is explored. As a whole, the present analysis indicates that one can combine thermocapillary flows and an adequate cell design to manipulate and control fluids in microgravity, with potential in a wide variety of applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
The Inhibitory Potential Effects of Polysaccharide Peptide from Coriolus versicolor on the Growth and Metastasis of 4T1 Breast Tumors Under Simulated Microgravity Conditions Microgravity Control of a Free Surface in Elliptical Containers Via Thermocapillary Flows Experiment on the Dynamics of a Thin Film Flow Coating on an Inclined Fiber Design and Modeling of a Self-Sensing Micro-Vibration Isolation System Utilizing a Lightweight Electret-Based Transducer for Space Applications Determination of the Electric Field by Particle Tracking in a Plasma Sheath Region during Free Fall
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1