Euler–Euler Numerical Model for Transport Phenomena Modeling in a Natural Circulation Loop Operated by Nanofluids

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2025-02-08 DOI:10.1007/s10765-024-03497-y
Blaž Kamenik, Nejc Vovk, Elif Begum Elcioglu, Firat Sezgin, Erdem Ozyurt, Ziya Haktan Karadeniz, Alpaslan Turgut, Jure Ravnik
{"title":"Euler–Euler Numerical Model for Transport Phenomena Modeling in a Natural Circulation Loop Operated by Nanofluids","authors":"Blaž Kamenik,&nbsp;Nejc Vovk,&nbsp;Elif Begum Elcioglu,&nbsp;Firat Sezgin,&nbsp;Erdem Ozyurt,&nbsp;Ziya Haktan Karadeniz,&nbsp;Alpaslan Turgut,&nbsp;Jure Ravnik","doi":"10.1007/s10765-024-03497-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores a computational approach to model multiphase heat transfer and fluid flow in a natural circulation loop utilizing nanofluids. We propose and implement an Euler–Euler framework in a CFD environment, incorporating an innovative boundary condition to preserve mass conservation during thermophoretic particle flux. The model’s accuracy is verified through a one-dimensional example, by comparing results against both an Euler–Lagrange model and an in-house finite volume solution. Experimental validation is conducted with aluminum oxide nanofluids at varying nanoparticle concentrations. We prepared the nanofluids and measured their thermophysical properties up to <span>\\(60^\\circ\\)</span>C. We assess the thermal performance of the nanofluid in natural circulation loop at different heating powers via experiment and numerical simulations. The findings reveal that the heat transfer enhancement offered by the nanofluid is modest, with minimal differences observed between the proposed Euler–Euler approach and a simpler single-phase model. The results underscore that while the Euler–Euler model offers detailed particle–fluid interactions, its practical thermal advantage is limited in this context.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03497-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03497-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores a computational approach to model multiphase heat transfer and fluid flow in a natural circulation loop utilizing nanofluids. We propose and implement an Euler–Euler framework in a CFD environment, incorporating an innovative boundary condition to preserve mass conservation during thermophoretic particle flux. The model’s accuracy is verified through a one-dimensional example, by comparing results against both an Euler–Lagrange model and an in-house finite volume solution. Experimental validation is conducted with aluminum oxide nanofluids at varying nanoparticle concentrations. We prepared the nanofluids and measured their thermophysical properties up to \(60^\circ\)C. We assess the thermal performance of the nanofluid in natural circulation loop at different heating powers via experiment and numerical simulations. The findings reveal that the heat transfer enhancement offered by the nanofluid is modest, with minimal differences observed between the proposed Euler–Euler approach and a simpler single-phase model. The results underscore that while the Euler–Euler model offers detailed particle–fluid interactions, its practical thermal advantage is limited in this context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
Thermophysical Properties of NbAlO4 and TaAlO4 Euler–Euler Numerical Model for Transport Phenomena Modeling in a Natural Circulation Loop Operated by Nanofluids Device for Direct Barocaloric Measurement The Laser Flash Technique: A Widespread Technology for Measurement of the Thermal Diffusivity of Solids and Liquids Experimental Compressed Liquid Density Measurements and Correlation of the Binary Mixture {n-Pentane (R601) + Trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E))}
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1