{"title":"Euler–Euler Numerical Model for Transport Phenomena Modeling in a Natural Circulation Loop Operated by Nanofluids","authors":"Blaž Kamenik, Nejc Vovk, Elif Begum Elcioglu, Firat Sezgin, Erdem Ozyurt, Ziya Haktan Karadeniz, Alpaslan Turgut, Jure Ravnik","doi":"10.1007/s10765-024-03497-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores a computational approach to model multiphase heat transfer and fluid flow in a natural circulation loop utilizing nanofluids. We propose and implement an Euler–Euler framework in a CFD environment, incorporating an innovative boundary condition to preserve mass conservation during thermophoretic particle flux. The model’s accuracy is verified through a one-dimensional example, by comparing results against both an Euler–Lagrange model and an in-house finite volume solution. Experimental validation is conducted with aluminum oxide nanofluids at varying nanoparticle concentrations. We prepared the nanofluids and measured their thermophysical properties up to <span>\\(60^\\circ\\)</span>C. We assess the thermal performance of the nanofluid in natural circulation loop at different heating powers via experiment and numerical simulations. The findings reveal that the heat transfer enhancement offered by the nanofluid is modest, with minimal differences observed between the proposed Euler–Euler approach and a simpler single-phase model. The results underscore that while the Euler–Euler model offers detailed particle–fluid interactions, its practical thermal advantage is limited in this context.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03497-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03497-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores a computational approach to model multiphase heat transfer and fluid flow in a natural circulation loop utilizing nanofluids. We propose and implement an Euler–Euler framework in a CFD environment, incorporating an innovative boundary condition to preserve mass conservation during thermophoretic particle flux. The model’s accuracy is verified through a one-dimensional example, by comparing results against both an Euler–Lagrange model and an in-house finite volume solution. Experimental validation is conducted with aluminum oxide nanofluids at varying nanoparticle concentrations. We prepared the nanofluids and measured their thermophysical properties up to \(60^\circ\)C. We assess the thermal performance of the nanofluid in natural circulation loop at different heating powers via experiment and numerical simulations. The findings reveal that the heat transfer enhancement offered by the nanofluid is modest, with minimal differences observed between the proposed Euler–Euler approach and a simpler single-phase model. The results underscore that while the Euler–Euler model offers detailed particle–fluid interactions, its practical thermal advantage is limited in this context.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.