Tsega Teklu, N. Gopalswamy, P. Mäkelä, S. Yashiro, S. Akiyama, H. Xie
{"title":"On the Hierarchical Relationship Between Type-II Radio Bursts and the Associated Coronal Mass Ejections","authors":"Tsega Teklu, N. Gopalswamy, P. Mäkelä, S. Yashiro, S. Akiyama, H. Xie","doi":"10.1007/s11207-024-02422-8","DOIUrl":null,"url":null,"abstract":"<div><p>Using Type-II radio bursts from Wind/WAVES and the associated coronal mass ejections (CMEs) from SOHO/LASCO, Gopalswamy et al. (2005) found a hierarchical relationship between the wavelength range of the Type-II bursts and the CME kinetic energy. Under ‘DH (Decametric–Hectometric) Type-II bursts’, they have included m (metric)-DH, pure DH, and DH-km (kilometric) bursts. In this work, we consider the pure DH, m-DH, and DH-km subsets separately. We find that CMEs associated with DH-km Type-II bursts have the largest values of average speed, nonhalo width, mass, and halo fraction. CMEs associated with m-DH Type-II bursts have a slightly larger average speed and mass than those causing pure DH Type-II bursts. CMEs associated with m-DH and pure DH Type-II bursts have a slightly lower speed and halo fraction compared to those associated with the combined set of DH Type-II bursts in Gopalswamy et al. (2005), while CMEs causing the DH-km Type-II bursts have even larger values of CME parameters. DH-km Type-II burst-associated CMEs have the largest solar energetic particles (SEPs) association compared to m-DH and pure DH Type-II burst-associated CMEs. The DH-km Type-II burst-associated CMEs’ SEP association is slightly smaller than that of Gopalswamy et al. (2005) m-km Type-II burst-associated CMEs. The CMEs associated with major SEP have a higher average speed than the pure DH and m-DH CMEs but smaller than the DH-km CMEs.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02422-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using Type-II radio bursts from Wind/WAVES and the associated coronal mass ejections (CMEs) from SOHO/LASCO, Gopalswamy et al. (2005) found a hierarchical relationship between the wavelength range of the Type-II bursts and the CME kinetic energy. Under ‘DH (Decametric–Hectometric) Type-II bursts’, they have included m (metric)-DH, pure DH, and DH-km (kilometric) bursts. In this work, we consider the pure DH, m-DH, and DH-km subsets separately. We find that CMEs associated with DH-km Type-II bursts have the largest values of average speed, nonhalo width, mass, and halo fraction. CMEs associated with m-DH Type-II bursts have a slightly larger average speed and mass than those causing pure DH Type-II bursts. CMEs associated with m-DH and pure DH Type-II bursts have a slightly lower speed and halo fraction compared to those associated with the combined set of DH Type-II bursts in Gopalswamy et al. (2005), while CMEs causing the DH-km Type-II bursts have even larger values of CME parameters. DH-km Type-II burst-associated CMEs have the largest solar energetic particles (SEPs) association compared to m-DH and pure DH Type-II burst-associated CMEs. The DH-km Type-II burst-associated CMEs’ SEP association is slightly smaller than that of Gopalswamy et al. (2005) m-km Type-II burst-associated CMEs. The CMEs associated with major SEP have a higher average speed than the pure DH and m-DH CMEs but smaller than the DH-km CMEs.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.