Hejian Zhu, Andrew J. Whittle, Roland J.-M. Pellenq
{"title":"Mesoscale simulation of the compression and small-strain elastic shear behavior of illite nanoparticle assemblies","authors":"Hejian Zhu, Andrew J. Whittle, Roland J.-M. Pellenq","doi":"10.1007/s11440-024-02440-7","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical properties of clay minerals are largely dependent upon the chemical compositions and the mesoscale fabrics of the constituent particles. This paper describes results of a series of mesoscale molecular dynamics simulations of the hydrostatic compression and shear strain behavior for initially randomly oriented assemblies of 10<sup>3</sup> illite primary particles. The particles are simulated as rigid-body ellipsoids that interact through the single-site, Gay–Berne potential function. This corresponds to a coarse-grained model based on prior atomistic scale computation of the potential of mean force for water-mediated interactions between pairs of particles through free energy perturbation method. We investigate the mesoscale fabrics of the NPT-equilibrated assemblies for confining pressures ranging from 1.0 to 125 atm, including path dependence associated with unloading and reloading. We analyze and quantify the geometric arrangement including particle orientation, specific surface area, properties of particle stacks/aggregates, and interstack pair correlation functions. The compression of each particle assembly is associated with large irrecoverable changes in void ratio, while unloading and reloading involves much smaller, largely recoverable volumetric strains. The results are qualitatively similar to macroscopic compression behavior reported in laboratory tests. We simulate the uniaxial and shear behavior at each of the equilibrated pressure states through a series of strain-controlled steps, allowing full relaxation of the virial stresses computed at each step. The simulations investigate directional and path dependence of the shear behavior for strain deviations up to 0.2%. The results show the onset on nonlinear stiffness properties at strain levels <span>\\(\\sim\\)</span>0.01% and hysteretic behavior upon unloading and reloading. Small-strain stiffness properties of the particle assemblies are qualitatively in good agreement with quasi-static, elastic stiffness properties reported for illitic clays.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"781 - 802"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02440-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties of clay minerals are largely dependent upon the chemical compositions and the mesoscale fabrics of the constituent particles. This paper describes results of a series of mesoscale molecular dynamics simulations of the hydrostatic compression and shear strain behavior for initially randomly oriented assemblies of 103 illite primary particles. The particles are simulated as rigid-body ellipsoids that interact through the single-site, Gay–Berne potential function. This corresponds to a coarse-grained model based on prior atomistic scale computation of the potential of mean force for water-mediated interactions between pairs of particles through free energy perturbation method. We investigate the mesoscale fabrics of the NPT-equilibrated assemblies for confining pressures ranging from 1.0 to 125 atm, including path dependence associated with unloading and reloading. We analyze and quantify the geometric arrangement including particle orientation, specific surface area, properties of particle stacks/aggregates, and interstack pair correlation functions. The compression of each particle assembly is associated with large irrecoverable changes in void ratio, while unloading and reloading involves much smaller, largely recoverable volumetric strains. The results are qualitatively similar to macroscopic compression behavior reported in laboratory tests. We simulate the uniaxial and shear behavior at each of the equilibrated pressure states through a series of strain-controlled steps, allowing full relaxation of the virial stresses computed at each step. The simulations investigate directional and path dependence of the shear behavior for strain deviations up to 0.2%. The results show the onset on nonlinear stiffness properties at strain levels \(\sim\)0.01% and hysteretic behavior upon unloading and reloading. Small-strain stiffness properties of the particle assemblies are qualitatively in good agreement with quasi-static, elastic stiffness properties reported for illitic clays.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.