{"title":"Focusing on Formyl Peptide Receptors after Traumatic Spinal Cord Injury: from Immune Response to Neurogenesis","authors":"Ziheng Pu, Dan Luo, Beining Shuai, Yuzhao Xu, Mingyong Liu, Jianhua Zhao","doi":"10.1007/s11064-025-04347-5","DOIUrl":null,"url":null,"abstract":"<div><p>The intricate pathophysiological cascades following spinal cord injury (SCI), encompassing cellular demise, axonal degeneration, and the formation of glial scars, pose formidable barriers to neural regeneration and restoration. Notably, neuroinflammation and glial scars emerge as pivotal barrier to post-SCI repair. Formyl peptide receptors (FPRs) emerge as critical regulators of immune responses, exerting significant influence over inflammatory modulation and nerve regeneration subsequent to SCI. Beyond their classical expression in myeloid cells, FPRs demonstrate a pronounced presence within the central nervous system (CNS) with roles in the progression of neurodegenerative disorders and neurological malignancies. Post-SCI, the equilibrium of the inflammatory microenvironment is recalibrated through the strategic modulation of FPRs, including facilitating a balance in microglial polarization, stimulating neural stem cells (NSCs) migration, and promoting neural axon elongation. These observations enlighten the potential of FPRs as innovative targets for neuronal regenerations bolstering SCI repair. This review endeavors to delineate the distribution and function of FPRs in the aftermath of SCI, with a special attention to their roles in inflammatory regulation, NSCs mobilization, and synaptic growth. By elucidating these mechanisms, we aspire to contribute novel insights and strategies for SCI therapy.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04347-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intricate pathophysiological cascades following spinal cord injury (SCI), encompassing cellular demise, axonal degeneration, and the formation of glial scars, pose formidable barriers to neural regeneration and restoration. Notably, neuroinflammation and glial scars emerge as pivotal barrier to post-SCI repair. Formyl peptide receptors (FPRs) emerge as critical regulators of immune responses, exerting significant influence over inflammatory modulation and nerve regeneration subsequent to SCI. Beyond their classical expression in myeloid cells, FPRs demonstrate a pronounced presence within the central nervous system (CNS) with roles in the progression of neurodegenerative disorders and neurological malignancies. Post-SCI, the equilibrium of the inflammatory microenvironment is recalibrated through the strategic modulation of FPRs, including facilitating a balance in microglial polarization, stimulating neural stem cells (NSCs) migration, and promoting neural axon elongation. These observations enlighten the potential of FPRs as innovative targets for neuronal regenerations bolstering SCI repair. This review endeavors to delineate the distribution and function of FPRs in the aftermath of SCI, with a special attention to their roles in inflammatory regulation, NSCs mobilization, and synaptic growth. By elucidating these mechanisms, we aspire to contribute novel insights and strategies for SCI therapy.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.