Influence of Implant Geometry on the Surface Strain Behavior of Peri-Implant Bone: A 3D Analysis

IF 3.7 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Clinical Implant Dentistry and Related Research Pub Date : 2025-02-07 DOI:10.1111/cid.70003
Moritz Löhlein, Constantin Motel, Manfred Wichmann, Ragai Edward Matta
{"title":"Influence of Implant Geometry on the Surface Strain Behavior of Peri-Implant Bone: A 3D Analysis","authors":"Moritz Löhlein,&nbsp;Constantin Motel,&nbsp;Manfred Wichmann,&nbsp;Ragai Edward Matta","doi":"10.1111/cid.70003","DOIUrl":null,"url":null,"abstract":"<p>To ensure long-term implant success, it is crucial to understand the force transmission from the implant to the surrounding bone. In dentistry, bioengineering methods are applied to investigate these processes. The aim of this study was to analyze the influence of different implant geometries on the surface strain behavior of porcine mandibles under load using a 3D optical camera system in combination with digital image correlation. Four different implant types were subjected to a force of 200 N in three different loading directions (axial, non-axial 15°, and non-axial 30°). Under axial loading, parallel-walled implants exhibited lower surface strain values on the peri-implant bone compared with tapered implants. However, when subjected to non-axial loading, these parallel-walled implants showed a substantial relative increase in strain by approximately a factor of 2.96 compared with axial conditions. At a 30° non-axial angle, long, tapered implants with a smaller diameter (BLX 3.75) produced lower peri-implant bone strains than implants with larger diameters and shorter lengths, while short, tapered implants (BLT) demonstrated a lower relative increase in strain (factor ~1.49) from axial to non-axial loading. Under non-axial loading, long, tapered implants with a small diameter resulted in lower strains in the peri-implant bone compared with implants with a larger diameter and shorter length. It was found that non-axial loads lead to higher strains than axial loads. Therefore, the success of implantation could be significantly influenced by selecting an appropriate implant geometry and the correct angulation of the implant.</p>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cid.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.70003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure long-term implant success, it is crucial to understand the force transmission from the implant to the surrounding bone. In dentistry, bioengineering methods are applied to investigate these processes. The aim of this study was to analyze the influence of different implant geometries on the surface strain behavior of porcine mandibles under load using a 3D optical camera system in combination with digital image correlation. Four different implant types were subjected to a force of 200 N in three different loading directions (axial, non-axial 15°, and non-axial 30°). Under axial loading, parallel-walled implants exhibited lower surface strain values on the peri-implant bone compared with tapered implants. However, when subjected to non-axial loading, these parallel-walled implants showed a substantial relative increase in strain by approximately a factor of 2.96 compared with axial conditions. At a 30° non-axial angle, long, tapered implants with a smaller diameter (BLX 3.75) produced lower peri-implant bone strains than implants with larger diameters and shorter lengths, while short, tapered implants (BLT) demonstrated a lower relative increase in strain (factor ~1.49) from axial to non-axial loading. Under non-axial loading, long, tapered implants with a small diameter resulted in lower strains in the peri-implant bone compared with implants with a larger diameter and shorter length. It was found that non-axial loads lead to higher strains than axial loads. Therefore, the success of implantation could be significantly influenced by selecting an appropriate implant geometry and the correct angulation of the implant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
13.90%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal. The range of topics covered by the journals will include but be not limited to: New scientific developments relating to bone Implant surfaces and their relationship to the surrounding tissues Computer aided implant designs Computer aided prosthetic designs Immediate implant loading Immediate implant placement Materials relating to bone induction and conduction New surgical methods relating to implant placement New materials and methods relating to implant restorations Methods for determining implant stability A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.
期刊最新文献
Influence of Implant Geometry on the Surface Strain Behavior of Peri-Implant Bone: A 3D Analysis Long-Term Bone Height Changes After Sinus Floor Elevation With Maxillary or Mandibular Bone Grafts: A Radiological Study A Clinical and Radiographic 3 Years Retrospective Study for Two Types of Locator Retained Mandibular Implant Overdenture Accuracy of a Cascade Network for Semi-Supervised Maxillary Sinus Detection and Sinus Cyst Classification Immediate Implant Placement in the Esthetic Zone: A Multi-Variate Analysis of Influencing Factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1