The Failure Prediction of Reinforced Composite Quasi-Brittle Structures by an Improved Version of the Extended Lumped Damage Approach

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal for Numerical Methods in Engineering Pub Date : 2025-02-07 DOI:10.1002/nme.70006
Daniel V. C. Teles, David L. N. F. Amorim, Edson D. Leonel
{"title":"The Failure Prediction of Reinforced Composite Quasi-Brittle Structures by an Improved Version of the Extended Lumped Damage Approach","authors":"Daniel V. C. Teles,&nbsp;David L. N. F. Amorim,&nbsp;Edson D. Leonel","doi":"10.1002/nme.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents an improved version of the Extended Lumped Damage Mechanics (XLDM) formulation within a position-based approach of the Finite Element Method (FEM). In the XLDM, the strain field has been assessed from the elongations of numerical extensometers, which connect the finite element nodes. In addition, localisation bands positioned along the elements' boundaries depict the mechanical effects of material degradation. The position-based approach of FEM enables the accurate modelling of geometrically non-linear effects and its computational implementation is straightforward. In this approach, the equilibrium configuration has been evaluated in relation to the nodal positions instead of its displacements. Thus, one improvement proposed herein involves the coupling of the XLDM failure predictions within an exact geometrically non-linear framework. Besides, in this study, the XLDM has been further improved by incorporating the damage growth caused by compressive stresses. The non-linear formulation proposed herein enables the presence of reinforcements, which have been added by an embedded scheme and lead to another improvement in the XLDM context. Three applications demonstrate the accuracy of the proposed non-linear scheme, in which the numerical responses obtained by the proposed improved formulation have been compared to experimental results available in the literature.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70006","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an improved version of the Extended Lumped Damage Mechanics (XLDM) formulation within a position-based approach of the Finite Element Method (FEM). In the XLDM, the strain field has been assessed from the elongations of numerical extensometers, which connect the finite element nodes. In addition, localisation bands positioned along the elements' boundaries depict the mechanical effects of material degradation. The position-based approach of FEM enables the accurate modelling of geometrically non-linear effects and its computational implementation is straightforward. In this approach, the equilibrium configuration has been evaluated in relation to the nodal positions instead of its displacements. Thus, one improvement proposed herein involves the coupling of the XLDM failure predictions within an exact geometrically non-linear framework. Besides, in this study, the XLDM has been further improved by incorporating the damage growth caused by compressive stresses. The non-linear formulation proposed herein enables the presence of reinforcements, which have been added by an embedded scheme and lead to another improvement in the XLDM context. Three applications demonstrate the accuracy of the proposed non-linear scheme, in which the numerical responses obtained by the proposed improved formulation have been compared to experimental results available in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
期刊最新文献
Issue Information An Adjoint-Based Methodology for Sensitivity Analysis of Time-Periodic Flows With Reduced Time Integration A Petrov-Galerkin Dual-Porosity Framework for Thermal Analysis of Fractured Porous Media A Numerical Framework for Fast Transient Compressible Flows Using Lattice Boltzmann and Immersed Boundary Methods The Failure Prediction of Reinforced Composite Quasi-Brittle Structures by an Improved Version of the Extended Lumped Damage Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1