Emmanouil G. Kakouris, Manolis N. Chatzis, Savvas Triantafyllou
{"title":"An Extended B-Spline-Based Material Point Method for Contact Problems","authors":"Emmanouil G. Kakouris, Manolis N. Chatzis, Savvas Triantafyllou","doi":"10.1002/nme.70003","DOIUrl":null,"url":null,"abstract":"<p>A novel Material Point Method (MPM) is introduced for addressing contact problems. In contrast to the standard multi-velocity field approach, this method employs a penalty method to evaluate contact forces at the discretised boundaries of their respective physical domains. This enhances simulation fidelity by accurately considering the deformability of the contact surface and preventing fictitious gaps between bodies in contact. Additionally, the method utilises the Extended B-Splines (EBSs) domain approximation, providing two key advantages. First, EBSs robustly mitigate grid cell-crossing errors by offering continuous gradients of the basis functions on the interface between adjacent grid cells. Second, numerical integration errors are minimised, even with small physical domains in occupied grid cells. The proposed method's robustness and accuracy are evaluated through benchmarks, including comparisons with analytical solutions, other state-of-the-art MPM-based contact algorithms, and experimental observations from the literature. Notably, the method demonstrates effective mitigation of stress errors inherent in contact simulations.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel Material Point Method (MPM) is introduced for addressing contact problems. In contrast to the standard multi-velocity field approach, this method employs a penalty method to evaluate contact forces at the discretised boundaries of their respective physical domains. This enhances simulation fidelity by accurately considering the deformability of the contact surface and preventing fictitious gaps between bodies in contact. Additionally, the method utilises the Extended B-Splines (EBSs) domain approximation, providing two key advantages. First, EBSs robustly mitigate grid cell-crossing errors by offering continuous gradients of the basis functions on the interface between adjacent grid cells. Second, numerical integration errors are minimised, even with small physical domains in occupied grid cells. The proposed method's robustness and accuracy are evaluated through benchmarks, including comparisons with analytical solutions, other state-of-the-art MPM-based contact algorithms, and experimental observations from the literature. Notably, the method demonstrates effective mitigation of stress errors inherent in contact simulations.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.