Intermodal Consistency of Whole-Brain Connectivity and Signal Propagation Delays

IF 3.5 2区 医学 Q1 NEUROIMAGING Human Brain Mapping Pub Date : 2025-02-07 DOI:10.1002/hbm.70093
Maciej Jedynak, Emahnuel Troisi Lopez, Antonella Romano, Viktor Jirsa, Olivier David, Pierpaolo Sorrentino
{"title":"Intermodal Consistency of Whole-Brain Connectivity and Signal Propagation Delays","authors":"Maciej Jedynak,&nbsp;Emahnuel Troisi Lopez,&nbsp;Antonella Romano,&nbsp;Viktor Jirsa,&nbsp;Olivier David,&nbsp;Pierpaolo Sorrentino","doi":"10.1002/hbm.70093","DOIUrl":null,"url":null,"abstract":"<p>Measuring propagation of perturbations across the human brain and their transmission delays is critical for network neuroscience, but it is a challenging problem that still requires advancement. Here, we compare results from a recently introduced, noninvasive technique of functional delays estimation from source-reconstructed electro/magnetoencephalography, to the corresponding findings from a large dataset of cortico-cortical evoked potentials estimated from intracerebral stimulations of patients suffering from pharmaco-resistant epilepsies. The two methods yield significantly similar probabilistic connectivity maps and signal propagation delays, in both cases characterized with Pearson correlations greater than 0.5 (when grouping by stimulated parcel is applied for delays). This similarity suggests a correspondence between the mechanisms underpinning the propagation of spontaneously generated scale-free perturbations (i.e., neuronal avalanches observed in resting state activity studied using magnetoencephalography) and the spreading of cortico-cortical evoked potentials. This manuscript provides evidence for the accuracy of the estimate of functional delays obtained noninvasively from reconstructed sources.</p><p>Conversely, our findings show that estimates obtained from externally induced perturbations in patients capture physiological activities in healthy subjects. In conclusion, this manuscript constitutes a mutual validation between two modalities, broadening their scope of applicability and interpretation. Importantly, the capability to measure delays noninvasively (as per MEG) paves the way for the inclusion of functional delays in personalized large-scale brain models as well as in diagnostic and prognostic algorithms.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring propagation of perturbations across the human brain and their transmission delays is critical for network neuroscience, but it is a challenging problem that still requires advancement. Here, we compare results from a recently introduced, noninvasive technique of functional delays estimation from source-reconstructed electro/magnetoencephalography, to the corresponding findings from a large dataset of cortico-cortical evoked potentials estimated from intracerebral stimulations of patients suffering from pharmaco-resistant epilepsies. The two methods yield significantly similar probabilistic connectivity maps and signal propagation delays, in both cases characterized with Pearson correlations greater than 0.5 (when grouping by stimulated parcel is applied for delays). This similarity suggests a correspondence between the mechanisms underpinning the propagation of spontaneously generated scale-free perturbations (i.e., neuronal avalanches observed in resting state activity studied using magnetoencephalography) and the spreading of cortico-cortical evoked potentials. This manuscript provides evidence for the accuracy of the estimate of functional delays obtained noninvasively from reconstructed sources.

Conversely, our findings show that estimates obtained from externally induced perturbations in patients capture physiological activities in healthy subjects. In conclusion, this manuscript constitutes a mutual validation between two modalities, broadening their scope of applicability and interpretation. Importantly, the capability to measure delays noninvasively (as per MEG) paves the way for the inclusion of functional delays in personalized large-scale brain models as well as in diagnostic and prognostic algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
期刊最新文献
Contribution of Glutamatergic and GABAergic Mechanisms to the Plasticity-Modulating Effects of Dopamine in the Human Motor Cortex Extended Technical and Clinical Validation of Deep Learning-Based Brainstem Segmentation for Application in Neurodegenerative Diseases Temporal Interference Stimulation Boosts Working Memory Performance in the Frontoparietal Network Decoding Parametric Grip-Force Anticipation From fMRI Data Head Motion in Diffusion Magnetic Resonance Imaging: Quantification, Mitigation, and Structural Associations in Large, Cross-Sectional Datasets Across the Lifespan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1