Suwang Zheng, Yufeng Zhang, Kun Huang, Jie Zhuang, Jiaojiao Lü, Yu Liu
{"title":"Temporal Interference Stimulation Boosts Working Memory Performance in the Frontoparietal Network","authors":"Suwang Zheng, Yufeng Zhang, Kun Huang, Jie Zhuang, Jiaojiao Lü, Yu Liu","doi":"10.1002/hbm.70160","DOIUrl":null,"url":null,"abstract":"<p>Temporal interference (TI) stimulation is a novel neuromodulation technique that overcomes the depth limitations of traditional transcranial electrical stimulation while avoiding the invasiveness of deep brain stimulation. Our previous behavioral research has demonstrated the effects of multi-target TI stimulation in enhancing working memory (WM) performance, however, the neural mechanisms of this special form of envelope modulation remain unclear. To address this issue, here we designed this randomized, double-blind, crossover study, which consisted of a task-based functional magnetic resonance imaging (fMRI) experiment, to explore how offline TI stimulation modulated brain activity and behavioral performance in healthy adults. We conducted a 2 × 2 within-subjects design with two factors: stimulation (TI vs. Sham) and time (pre vs. post). Participants received two stimulation protocols in a random order: TI (beat frequency: 6 Hz, targeting middle frontal gyrus [MFG] and inferior parietal lobule [IPL]) and sham stimulation. Neuroimaging data of a WM task with different cognitive loads were acquisited immediately before and after stimulation. We found TI stimulation significantly improved <i>d</i>′ in the high-demand WM task. Whole-brain analysis showed the significant time-by-stimulation interactions in two main clusters in IPL and precuneus with lower activation after TI stimulation. The generalized psychophysiological interaction (gPPI) analysis revealed a significant interaction in task-modulated connectivity between MFG and IPL, with improvement observed after TI stimulation. Notably, this increasing functional connectivity induced by TI stimulation was positively correlated with better behavioral performance. Overall, our findings show specific effects of TI stimulation on brain activation and functional connectivity in the frontoparietal network and may contribute to provide new perspectives for future neuromodulation applications.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal interference (TI) stimulation is a novel neuromodulation technique that overcomes the depth limitations of traditional transcranial electrical stimulation while avoiding the invasiveness of deep brain stimulation. Our previous behavioral research has demonstrated the effects of multi-target TI stimulation in enhancing working memory (WM) performance, however, the neural mechanisms of this special form of envelope modulation remain unclear. To address this issue, here we designed this randomized, double-blind, crossover study, which consisted of a task-based functional magnetic resonance imaging (fMRI) experiment, to explore how offline TI stimulation modulated brain activity and behavioral performance in healthy adults. We conducted a 2 × 2 within-subjects design with two factors: stimulation (TI vs. Sham) and time (pre vs. post). Participants received two stimulation protocols in a random order: TI (beat frequency: 6 Hz, targeting middle frontal gyrus [MFG] and inferior parietal lobule [IPL]) and sham stimulation. Neuroimaging data of a WM task with different cognitive loads were acquisited immediately before and after stimulation. We found TI stimulation significantly improved d′ in the high-demand WM task. Whole-brain analysis showed the significant time-by-stimulation interactions in two main clusters in IPL and precuneus with lower activation after TI stimulation. The generalized psychophysiological interaction (gPPI) analysis revealed a significant interaction in task-modulated connectivity between MFG and IPL, with improvement observed after TI stimulation. Notably, this increasing functional connectivity induced by TI stimulation was positively correlated with better behavioral performance. Overall, our findings show specific effects of TI stimulation on brain activation and functional connectivity in the frontoparietal network and may contribute to provide new perspectives for future neuromodulation applications.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.