Elham Ghanavati, Mohammad Ali Salehinejad, Marie C. Beaupain, Lorena Melo, Amba Frese, Min-Fang Kuo, Michael A. Nitsche
{"title":"Contribution of Glutamatergic and GABAergic Mechanisms to the Plasticity-Modulating Effects of Dopamine in the Human Motor Cortex","authors":"Elham Ghanavati, Mohammad Ali Salehinejad, Marie C. Beaupain, Lorena Melo, Amba Frese, Min-Fang Kuo, Michael A. Nitsche","doi":"10.1002/hbm.70162","DOIUrl":null,"url":null,"abstract":"<p>Dopamine, a key neuromodulator in the central nervous system, regulates cortical excitability and plasticity by interacting with glutamate and GABA receptors, which are affected by dopamine receptor subtypes (D1- and D2-like). Non-invasive brain stimulation techniques can induce plasticity and monitor cortical facilitation and inhibition in humans. In a randomized, placebo-controlled, double-blinded study, we investigated how dopamine and D1- and D2-like receptors impact transcranial direct current stimulation (tDCS)-induced plasticity concerning glutamatergic and GABAergic mechanisms. Eighteen healthy volunteers received 1 mA anodal (13 min) and cathodal tDCS (9 min) over the left motor cortex combined with the dopaminergic agents l-dopa (general dopamine activation), bromocriptine (D2-like receptor agonist), combined D2 antagonism via sulpiride and general dopaminergic activation via l-dopa to activate D1-like receptors, and placebo medication. Glutamate-related cortical facilitation and GABA-related cortical inhibition were monitored using transcranial magnetic stimulation techniques, including I–O curve, intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and I-wave facilitation protocols. Our results indicate that anodal tDCS alone enhanced the I–O curve and ICF while decreasing SICI. Conversely, cathodal tDCS decreased the I-O curve and ICF while increasing SICI. General dopamine and D2 receptor activation combined with anodal tDCS decreased the I-O curve and ICF, but enhanced SICI compared to tDCS alone. When paired with cathodal tDCS, general Dopamine and D2-like receptor activity enhancement prolonged the cathodal tDCS effect on excitability. After anodal tDCS, D1-like receptor activation increased the I-O curve and ICF while reducing SICI. These effects were abolished with cathodal tDCS. Dopaminergic substances combined with anodal and cathodal tDCS did not have a significant effect on I-wave facilitation. These results suggest that D1-like receptor activation enhanced LTP-like plasticity and abolished LTD-like plasticity via glutamatergic NMDA receptor enhancement, while global dopaminergic and D2-like receptor enhancement weakened LTP-like but strengthened LTD-like plasticity primarily via glutamatergic NMDA receptor activity diminution.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70162","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Dopamine, a key neuromodulator in the central nervous system, regulates cortical excitability and plasticity by interacting with glutamate and GABA receptors, which are affected by dopamine receptor subtypes (D1- and D2-like). Non-invasive brain stimulation techniques can induce plasticity and monitor cortical facilitation and inhibition in humans. In a randomized, placebo-controlled, double-blinded study, we investigated how dopamine and D1- and D2-like receptors impact transcranial direct current stimulation (tDCS)-induced plasticity concerning glutamatergic and GABAergic mechanisms. Eighteen healthy volunteers received 1 mA anodal (13 min) and cathodal tDCS (9 min) over the left motor cortex combined with the dopaminergic agents l-dopa (general dopamine activation), bromocriptine (D2-like receptor agonist), combined D2 antagonism via sulpiride and general dopaminergic activation via l-dopa to activate D1-like receptors, and placebo medication. Glutamate-related cortical facilitation and GABA-related cortical inhibition were monitored using transcranial magnetic stimulation techniques, including I–O curve, intracortical facilitation (ICF), short-interval intracortical inhibition (SICI), and I-wave facilitation protocols. Our results indicate that anodal tDCS alone enhanced the I–O curve and ICF while decreasing SICI. Conversely, cathodal tDCS decreased the I-O curve and ICF while increasing SICI. General dopamine and D2 receptor activation combined with anodal tDCS decreased the I-O curve and ICF, but enhanced SICI compared to tDCS alone. When paired with cathodal tDCS, general Dopamine and D2-like receptor activity enhancement prolonged the cathodal tDCS effect on excitability. After anodal tDCS, D1-like receptor activation increased the I-O curve and ICF while reducing SICI. These effects were abolished with cathodal tDCS. Dopaminergic substances combined with anodal and cathodal tDCS did not have a significant effect on I-wave facilitation. These results suggest that D1-like receptor activation enhanced LTP-like plasticity and abolished LTD-like plasticity via glutamatergic NMDA receptor enhancement, while global dopaminergic and D2-like receptor enhancement weakened LTP-like but strengthened LTD-like plasticity primarily via glutamatergic NMDA receptor activity diminution.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.