Shengjun Xu, Rui Shen, Erhu Liu, Zongfang Ma, Miao Du, Jun Liu, Bohan Zhan
{"title":"A structure-prior guided adaptive context selection network for remote sensing semantic segmentation","authors":"Shengjun Xu, Rui Shen, Erhu Liu, Zongfang Ma, Miao Du, Jun Liu, Bohan Zhan","doi":"10.1049/ell2.70161","DOIUrl":null,"url":null,"abstract":"<p>In remote sensing image segmentation, recognizing buildings is challenging when the visual evidence from pixels is weak or when buildings belong to small, spatially structured objects. To address this issue, a structure-prior guided adaptive context selection network (SGACS-Net) is proposed for remote sensing semantic segmentation. The core is to use structure-prior knowledge to dynamically capture prior contextual information and higher-order object structural features, thereby improving the accuracy of remote sensing building segmentation. First, an adaptive context selection module is designed. By dynamically adjusting the spatial sensing field, this module effectively models the global long-range context information dependencies. It captures varying context information of buildings at different scales, thereby enhancing the network's ability to extract building feature representations. Second, a structure-prior guided variable loss function is proposed. It utilizes the structural features of building points, lines, and surface to identify key regions. By leveraging advanced structure-prior knowledge, it enhances the network's ability to express structural features. Experimental results on two datasets show that the proposed SGACS-Net outperforms other typical and state-of-the-art methods in terms of remote sensing semantic segmentation performance.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70161","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70161","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In remote sensing image segmentation, recognizing buildings is challenging when the visual evidence from pixels is weak or when buildings belong to small, spatially structured objects. To address this issue, a structure-prior guided adaptive context selection network (SGACS-Net) is proposed for remote sensing semantic segmentation. The core is to use structure-prior knowledge to dynamically capture prior contextual information and higher-order object structural features, thereby improving the accuracy of remote sensing building segmentation. First, an adaptive context selection module is designed. By dynamically adjusting the spatial sensing field, this module effectively models the global long-range context information dependencies. It captures varying context information of buildings at different scales, thereby enhancing the network's ability to extract building feature representations. Second, a structure-prior guided variable loss function is proposed. It utilizes the structural features of building points, lines, and surface to identify key regions. By leveraging advanced structure-prior knowledge, it enhances the network's ability to express structural features. Experimental results on two datasets show that the proposed SGACS-Net outperforms other typical and state-of-the-art methods in terms of remote sensing semantic segmentation performance.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO