State-of-the-art gene therapy in epilepsy.

IF 4.1 2区 医学 Q1 CLINICAL NEUROLOGY Current Opinion in Neurology Pub Date : 2025-02-07 DOI:10.1097/WCO.0000000000001349
Matthew C Walker
{"title":"State-of-the-art gene therapy in epilepsy.","authors":"Matthew C Walker","doi":"10.1097/WCO.0000000000001349","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Gene therapy in epilepsy has undergone a rapid expansion in recent years. This has largely been driven by both advances in our understanding of epilepsy genetics and mechanisms, and also significant advances in gene therapy tools, in particular safe and effective viral vectors. Epilepsy remains an ideal target disease for gene therapy and this review highlights recent developments in this area.</p><p><strong>Recent findings: </strong>There have been continued advances in the development of antisense oligonucleotide therapies to knock down genes in the treatment of monogenic epilepsies with some now entering clinical trial. However, the greatest recent advances have been in vector gene therapy, which offers a more permanent solution by delivering therapeutic genes directly to the brain as a one-off therapy. In particular, there has been a growth in methods that target focal epilepsy. Such promising approaches close to or in clinical trial include expressing NPY and its Y2 receptor, knocking-down GluK5, a kainate receptor subunit, and the over-expression of Kv1.1, an endogenous potassium channel.In the future, it is likely that we will take advantage of approaches of regulating more precisely network excitability by using methods such as optogenetics, designer receptors exclusively activated by designer drugs (DREADDs), 'inhibitory' glutamate receptors activated by excessive glutamate spill-over, and activity-dependent promoters, which target gene expression to the 'hyperactive' neurons.</p><p><strong>Summary: </strong>Gene therapies offer a novel approach to the treatment of not just genetic epilepsies but any form of epilepsy and may in the future offer an alternative to drug and surgical therapies, allowing more precise, permanent and targeted treatment with fewer adverse effects.</p>","PeriodicalId":11059,"journal":{"name":"Current Opinion in Neurology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WCO.0000000000001349","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: Gene therapy in epilepsy has undergone a rapid expansion in recent years. This has largely been driven by both advances in our understanding of epilepsy genetics and mechanisms, and also significant advances in gene therapy tools, in particular safe and effective viral vectors. Epilepsy remains an ideal target disease for gene therapy and this review highlights recent developments in this area.

Recent findings: There have been continued advances in the development of antisense oligonucleotide therapies to knock down genes in the treatment of monogenic epilepsies with some now entering clinical trial. However, the greatest recent advances have been in vector gene therapy, which offers a more permanent solution by delivering therapeutic genes directly to the brain as a one-off therapy. In particular, there has been a growth in methods that target focal epilepsy. Such promising approaches close to or in clinical trial include expressing NPY and its Y2 receptor, knocking-down GluK5, a kainate receptor subunit, and the over-expression of Kv1.1, an endogenous potassium channel.In the future, it is likely that we will take advantage of approaches of regulating more precisely network excitability by using methods such as optogenetics, designer receptors exclusively activated by designer drugs (DREADDs), 'inhibitory' glutamate receptors activated by excessive glutamate spill-over, and activity-dependent promoters, which target gene expression to the 'hyperactive' neurons.

Summary: Gene therapies offer a novel approach to the treatment of not just genetic epilepsies but any form of epilepsy and may in the future offer an alternative to drug and surgical therapies, allowing more precise, permanent and targeted treatment with fewer adverse effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Neurology
Current Opinion in Neurology 医学-临床神经学
CiteScore
8.60
自引率
0.00%
发文量
174
审稿时长
6-12 weeks
期刊介绍: ​​​​​​​​Current Opinion in Neurology is a highly regarded journal offering insightful editorials and on-the-mark invited reviews; covering key subjects such as cerebrovascular disease, developmental disorders, neuroimaging and demyelinating diseases. Published bimonthly, each issue of Current Opinion in Neurology introduces world renowned guest editors and internationally recognized academics within the neurology field, delivering a widespread selection of expert assessments on the latest developments from the most recent literature.
期刊最新文献
Epilepsy in low- to middle-income countries. SEEG in 2025: progress and pending challenges in stereotaxy methods, biomarkers and radiofrequency thermocoagulation. Mental health and psychological processes associated with cognitive aging and dementia. State-of-the-art gene therapy in epilepsy. The role of the gut microbiome in Alzheimer's disease pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1