Neural mass modeling reveals that hyperexcitability underpins slow-wave sleep changes in children with epilepsy.

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY Epilepsia Pub Date : 2025-02-07 DOI:10.1111/epi.18293
Dominic M Dunstan, Samantha Y S Chan, Marc Goodfellow
{"title":"Neural mass modeling reveals that hyperexcitability underpins slow-wave sleep changes in children with epilepsy.","authors":"Dominic M Dunstan, Samantha Y S Chan, Marc Goodfellow","doi":"10.1111/epi.18293","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The relationship between sleep and epilepsy is important but imperfectly understood. We sought to understand the mechanisms that explain the differences in sleep homeostasis observed in children with epilepsy.</p><p><strong>Methods: </strong>We used a neural mass model to replicate sleep electroencephalography (EEG) recorded from 15 children with focal lesional epilepsies and 16 healthy age-matched controls. Different parameter sets were recovered in the model for each subject.</p><p><strong>Results: </strong>The model revealed that sleep EEG differences are driven by enhanced firing rates in the neuronal populations of patients, which arise predominantly due to enhanced excitatory synaptic currents. These differences were more marked in patients who had seizures within 72 h after the sleep recording. Furthermore, model parameters inferred from patients resided closer to model parameters inferred from a typical seizure rhythm.</p><p><strong>Significance: </strong>These results demonstrate that brain mechanisms relating to epilepsy manifest in the interictal EEG in slow-wave sleep, and that EEG recorded from patients can be mapped to synaptic deficits that may explain their predisposition to seizures. Neural mass models inferred from sleep EEG data have the potential to generate new biomarkers to predict seizure occurrence and inform treatment decisions.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18293","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The relationship between sleep and epilepsy is important but imperfectly understood. We sought to understand the mechanisms that explain the differences in sleep homeostasis observed in children with epilepsy.

Methods: We used a neural mass model to replicate sleep electroencephalography (EEG) recorded from 15 children with focal lesional epilepsies and 16 healthy age-matched controls. Different parameter sets were recovered in the model for each subject.

Results: The model revealed that sleep EEG differences are driven by enhanced firing rates in the neuronal populations of patients, which arise predominantly due to enhanced excitatory synaptic currents. These differences were more marked in patients who had seizures within 72 h after the sleep recording. Furthermore, model parameters inferred from patients resided closer to model parameters inferred from a typical seizure rhythm.

Significance: These results demonstrate that brain mechanisms relating to epilepsy manifest in the interictal EEG in slow-wave sleep, and that EEG recorded from patients can be mapped to synaptic deficits that may explain their predisposition to seizures. Neural mass models inferred from sleep EEG data have the potential to generate new biomarkers to predict seizure occurrence and inform treatment decisions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
期刊最新文献
Vagus nerve stimulation in Lennox-Gastaut syndrome: Twenty-four-month data and experience from the CORE-VNS study. Neural mass modeling reveals that hyperexcitability underpins slow-wave sleep changes in children with epilepsy. The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities. Risk of epilepsy following first unprovoked and acute seizures: Cohort study. Evolution in the prescription and cost of non-intravenous rescue benzodiazepines for the treatment of seizure emergencies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1