Toll-Like Receptors in Pentachlorophenol- and Dibutyltin-Induced Production of Pro-Inflammatory Cytokines, Interleukin (IL)-1β, and IL-6, by Human Immune Cells.
Aleshia Seaton-Terry, Zinia Hunter, Meaghan Lewis, Sophia Fisher, Ellie Bray, Brian Townsend, Saleban Gabure, Latoya Daniel, Margaret Whalen
{"title":"Toll-Like Receptors in Pentachlorophenol- and Dibutyltin-Induced Production of Pro-Inflammatory Cytokines, Interleukin (IL)-1β, and IL-6, by Human Immune Cells.","authors":"Aleshia Seaton-Terry, Zinia Hunter, Meaghan Lewis, Sophia Fisher, Ellie Bray, Brian Townsend, Saleban Gabure, Latoya Daniel, Margaret Whalen","doi":"10.1002/jat.4762","DOIUrl":null,"url":null,"abstract":"<p><p>Pentachlorophenol (PCP) and dibutyltin dichloride (DBT) contaminate the environment due to their diverse applications. PCP has been found from 0.26 to 5 μM in the serum of exposed individuals and at an average of 0.15 μM in the unexposed. DBT has been detected in human blood at levels up to 0.3 μM. Exposure to these contaminants is linked to pathological conditions including cancer. Interleukin-1 beta (IL-1β) and IL-6 are pro-inflammatory cytokines that when produced inappropriately can cause chronic inflammation, which is linked to pathologies including autoimmune diseases and cancer. PCP and DBT have been shown to increase the production of IL-1β and IL-6 by immune cells in a MAP kinase (MAPK) dependent process. Toll-like receptors (TLRs) activate the signaling pathways linked to MAPK that lead to production of these cytokines. This study demonstrates that PCP-induced production of IL-1β and IL-6 is dependent on TLR4 and TLR8, and independent of TLR1/2, TLR2, and TLR3. Additionally, DBT-induced IL-6 production depends on TLR1/2, whereas IL-1β production does not. Blocking the TLR-linked adapter protein, MyD88, lead to a loss of both PCP and DBT stimulation of IL-1β and IL-6. These findings indicate that both PCP and DBT interact with selected TLRs as part of their mechanisms of elevating the levels of critical pro-inflammatory cytokines, which may contribute to chronic inflammation and its related pathologies.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4762","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pentachlorophenol (PCP) and dibutyltin dichloride (DBT) contaminate the environment due to their diverse applications. PCP has been found from 0.26 to 5 μM in the serum of exposed individuals and at an average of 0.15 μM in the unexposed. DBT has been detected in human blood at levels up to 0.3 μM. Exposure to these contaminants is linked to pathological conditions including cancer. Interleukin-1 beta (IL-1β) and IL-6 are pro-inflammatory cytokines that when produced inappropriately can cause chronic inflammation, which is linked to pathologies including autoimmune diseases and cancer. PCP and DBT have been shown to increase the production of IL-1β and IL-6 by immune cells in a MAP kinase (MAPK) dependent process. Toll-like receptors (TLRs) activate the signaling pathways linked to MAPK that lead to production of these cytokines. This study demonstrates that PCP-induced production of IL-1β and IL-6 is dependent on TLR4 and TLR8, and independent of TLR1/2, TLR2, and TLR3. Additionally, DBT-induced IL-6 production depends on TLR1/2, whereas IL-1β production does not. Blocking the TLR-linked adapter protein, MyD88, lead to a loss of both PCP and DBT stimulation of IL-1β and IL-6. These findings indicate that both PCP and DBT interact with selected TLRs as part of their mechanisms of elevating the levels of critical pro-inflammatory cytokines, which may contribute to chronic inflammation and its related pathologies.
期刊介绍:
Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.