RNF6 inhibits lung adenocarcinoma cell proliferation by promoting cyclin D2 degradation.

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2025-02-07 DOI:10.1158/1541-7786.MCR-24-0703
Yuening Sun, Liyang Jiang, Zubin Zhang, Rongrong Zhu, Jingpei Liang, Ziyang Liu, Yuangming He, Zhenqian Huang, Chunhua Ling, Xiumin Zhou, Xinliang Mao
{"title":"RNF6 inhibits lung adenocarcinoma cell proliferation by promoting cyclin D2 degradation.","authors":"Yuening Sun, Liyang Jiang, Zubin Zhang, Rongrong Zhu, Jingpei Liang, Ziyang Liu, Yuangming He, Zhenqian Huang, Chunhua Ling, Xiumin Zhou, Xinliang Mao","doi":"10.1158/1541-7786.MCR-24-0703","DOIUrl":null,"url":null,"abstract":"<p><p>The E3 ubiquitin ligase RNF6 has been widely recognized for its role in promoting tumorigenesis in multiple cancers. However, we found it is downregulated in lung adenocarcinoma (LUAD) and the molecular rationale for this discrepancy remains unclear. In the present study, we find that RNF6 but not its ΔRING inactive form inhibits LUAD cell proliferation and migration and sensitizes LUAD to chemotherapy. To understand the molecular mechanism, we utilize affinity purification/tandem mass spectrometry to analyze RNF6-interacting proteins and find that cyclin D2 (CCND2), a key regulator of the G1/S transition in the cell cycle. RNF6 physically binds to CCND2 and mediates its K48-linked polyubiquitination and subsequent degradation. However, ΔRING RNF6 fails to mediate CCND2 for ubiquitination and degradation. Moreover, Thr280 is critically important for CCND2 stability. When Thr280 is mutated, CCND2 becomes more stable and less ubiquitinated by RNF6. Furthermore, RNF6 arrests LUAD cell cycle at the G1 phase by inhibiting the CCND2/pRb signaling pathway, which is consistent with decreased cell proliferation. Lastly, RNF6 curtails the growth of LUAD xenografts in vivo, associated with decreased CCND2 expression. Therefore, RNF6 is a novel E3 ligase of CCND2 and suppresses LUAD cell proliferation. Implications: This study reveals a novel regulation on cell cycle transition in LUAD and suggests the RNF6/CCND2 axis may represent an alternative therapeutic target for the treatment of LUAD.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0703","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The E3 ubiquitin ligase RNF6 has been widely recognized for its role in promoting tumorigenesis in multiple cancers. However, we found it is downregulated in lung adenocarcinoma (LUAD) and the molecular rationale for this discrepancy remains unclear. In the present study, we find that RNF6 but not its ΔRING inactive form inhibits LUAD cell proliferation and migration and sensitizes LUAD to chemotherapy. To understand the molecular mechanism, we utilize affinity purification/tandem mass spectrometry to analyze RNF6-interacting proteins and find that cyclin D2 (CCND2), a key regulator of the G1/S transition in the cell cycle. RNF6 physically binds to CCND2 and mediates its K48-linked polyubiquitination and subsequent degradation. However, ΔRING RNF6 fails to mediate CCND2 for ubiquitination and degradation. Moreover, Thr280 is critically important for CCND2 stability. When Thr280 is mutated, CCND2 becomes more stable and less ubiquitinated by RNF6. Furthermore, RNF6 arrests LUAD cell cycle at the G1 phase by inhibiting the CCND2/pRb signaling pathway, which is consistent with decreased cell proliferation. Lastly, RNF6 curtails the growth of LUAD xenografts in vivo, associated with decreased CCND2 expression. Therefore, RNF6 is a novel E3 ligase of CCND2 and suppresses LUAD cell proliferation. Implications: This study reveals a novel regulation on cell cycle transition in LUAD and suggests the RNF6/CCND2 axis may represent an alternative therapeutic target for the treatment of LUAD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
SIRT2 regulates the SMARCB1 loss-driven differentiation block in ATRT. Epigenetic dysregulation of retrotransposons in cancer. KSR1 mediates small-cell lung carcinoma tumor initiation and cisplatin resistance. Kindlin-2-mediated hematopoiesis remodeling regulates triple-negative breast cancer immune evasion. PAX8 interacts with the SWI/SNF complex at enhancers to drive proliferation in ovarian cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1