Isolation, characterization and genomic analysis of bacteriophages for biocontrol of vibriosis caused by Vibrio alginolyticus.

IF 2.5 4区 医学 Q3 VIROLOGY Virus research Pub Date : 2025-02-04 DOI:10.1016/j.virusres.2025.199529
Nattarika Chaichana, Rutinan Rattanaburee, Komwit Surachat, Decha Sermwittayawong, Natthawan Sermwittayawong
{"title":"Isolation, characterization and genomic analysis of bacteriophages for biocontrol of vibriosis caused by Vibrio alginolyticus.","authors":"Nattarika Chaichana, Rutinan Rattanaburee, Komwit Surachat, Decha Sermwittayawong, Natthawan Sermwittayawong","doi":"10.1016/j.virusres.2025.199529","DOIUrl":null,"url":null,"abstract":"<p><p>Vibrio alginolyticus is a significant opportunistic pathogen in marine environments, affecting both marine organisms and humans. The rise of antibiotic-resistant strains has prompted the exploration of bacteriophages as alternative biological control agents. In this study, 414 lytic bacteriophages specific to V. alginolyticus were isolated from various seafood and environmental samples. Phages P122, P125, and P160 demonstrated the broadest host range, effectively lysing 79.01% of fish pathogenic V. alginolyticus strains and 44.69% of environmental strains. However, no activity was observed against clinical V. alginolyticus strains or other tested species, including V. harveyi, Escherichia coli, Staphylococcus aureus, and Aeromonas hydrophila. One-step growth curve analysis revealed latent periods of 40 to 60 min and burst sizes ranging from 140 to 367 PFU/infected cells. Transmission electron microscopy (TEM) classified these phages within the class of Caudoviricetes with an icosahedral head and a long non-contractile tail. Moreover, whole-genome sequencing (WGS) identified genome sizes of approximately 76 kb, with 272-280 open reading frames (ORFs), no tRNA and pathogenic-associated genes. Comparative genomic analysis showed over 97% similarity with other Vibrio phages. Phylogenetic analysis based on the terminase subunit also confirmed phages P122, P125, and P160 belonging to the class of Caudoviricetes. The phages were non-toxic to Galleria mellonella larvae and showed promise in reducing mortality rates when used as a cocktail treatment. The study highlights the potential of these phages as effective biocontrol agents in aquaculture, offering a promising alternative to antibiotics for managing Vibrio infections.</p>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":" ","pages":"199529"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virusres.2025.199529","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vibrio alginolyticus is a significant opportunistic pathogen in marine environments, affecting both marine organisms and humans. The rise of antibiotic-resistant strains has prompted the exploration of bacteriophages as alternative biological control agents. In this study, 414 lytic bacteriophages specific to V. alginolyticus were isolated from various seafood and environmental samples. Phages P122, P125, and P160 demonstrated the broadest host range, effectively lysing 79.01% of fish pathogenic V. alginolyticus strains and 44.69% of environmental strains. However, no activity was observed against clinical V. alginolyticus strains or other tested species, including V. harveyi, Escherichia coli, Staphylococcus aureus, and Aeromonas hydrophila. One-step growth curve analysis revealed latent periods of 40 to 60 min and burst sizes ranging from 140 to 367 PFU/infected cells. Transmission electron microscopy (TEM) classified these phages within the class of Caudoviricetes with an icosahedral head and a long non-contractile tail. Moreover, whole-genome sequencing (WGS) identified genome sizes of approximately 76 kb, with 272-280 open reading frames (ORFs), no tRNA and pathogenic-associated genes. Comparative genomic analysis showed over 97% similarity with other Vibrio phages. Phylogenetic analysis based on the terminase subunit also confirmed phages P122, P125, and P160 belonging to the class of Caudoviricetes. The phages were non-toxic to Galleria mellonella larvae and showed promise in reducing mortality rates when used as a cocktail treatment. The study highlights the potential of these phages as effective biocontrol agents in aquaculture, offering a promising alternative to antibiotics for managing Vibrio infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virus research
Virus research 医学-病毒学
CiteScore
9.50
自引率
2.00%
发文量
239
审稿时长
43 days
期刊介绍: Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.
期刊最新文献
Genetic characteristics and pathogenesis of clade 2.3.4.4b H5N1 high pathogenicity avian influenza virus isolated from poultry in South Korea, 2022–2023 Screening for HBV, HCV, TP and HIV in pregnant women from various ethnic groups in Yili, Xinjiang, China. Pathogenicity of avian reovirus variant in the immune organs of broiler chicks Determination of whole genome sequence of human cytomegalovirus circulating in Japan and discovery of geographic genome structure in UL148 gene Isolation, characterization and genomic analysis of bacteriophages for biocontrol of vibriosis caused by Vibrio alginolyticus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1