Reclassification of the conventional risk assessment for aging-related diseases by electrocardiogram-enabled biological age.

IF 4.1 Q2 GERIATRICS & GERONTOLOGY npj aging Pub Date : 2025-02-06 DOI:10.1038/s41514-025-00198-0
Chih-Min Liu, Ming-Jen Kuo, Chin-Yu Kuo, I-Chien Wu, Pei-Fen Chen, Wan-Ting Hsu, Li-Lien Liao, Shih-Ann Chen, Hsuan-Ming Tsao, Chien-Liang Liu, Yu-Feng Hu
{"title":"Reclassification of the conventional risk assessment for aging-related diseases by electrocardiogram-enabled biological age.","authors":"Chih-Min Liu, Ming-Jen Kuo, Chin-Yu Kuo, I-Chien Wu, Pei-Fen Chen, Wan-Ting Hsu, Li-Lien Liao, Shih-Ann Chen, Hsuan-Ming Tsao, Chien-Liang Liu, Yu-Feng Hu","doi":"10.1038/s41514-025-00198-0","DOIUrl":null,"url":null,"abstract":"<p><p>An artificial intelligence (AI)-enabled electrocardiogram (ECG) model has been developed in a healthy adult population to predict ECG biological age (ECG-BA). This ECG-BA exhibited a robust correlation with chronological age (CA) in healthy adults and additionally significantly enhanced the prediction of aging-related diseases' onset in adults with subclinical diseases. The model showed particularly strong predictive power for cardiovascular and non-cardiovascular diseases such as stroke, coronary artery disease, peripheral arterial occlusive disease, myocardial infarction, Alzheimer's disease, osteoarthritis, and cancers. When combined with CA, ECG-BA improved diagnostic accuracy and risk classification by 21% over using CA alone, notably offering the greatest improvements in cancer prediction. The net reclassification improvement significantly reduced misclassification rates for disease onset predictions. This comprehensive study validates ECG-BA as an effective supplement to CA, advancing the precision of risk assessments for aging-related conditions and suggesting broad implications for enhancing preventive healthcare strategies, potentially leading to better patient outcomes.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"7"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00198-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An artificial intelligence (AI)-enabled electrocardiogram (ECG) model has been developed in a healthy adult population to predict ECG biological age (ECG-BA). This ECG-BA exhibited a robust correlation with chronological age (CA) in healthy adults and additionally significantly enhanced the prediction of aging-related diseases' onset in adults with subclinical diseases. The model showed particularly strong predictive power for cardiovascular and non-cardiovascular diseases such as stroke, coronary artery disease, peripheral arterial occlusive disease, myocardial infarction, Alzheimer's disease, osteoarthritis, and cancers. When combined with CA, ECG-BA improved diagnostic accuracy and risk classification by 21% over using CA alone, notably offering the greatest improvements in cancer prediction. The net reclassification improvement significantly reduced misclassification rates for disease onset predictions. This comprehensive study validates ECG-BA as an effective supplement to CA, advancing the precision of risk assessments for aging-related conditions and suggesting broad implications for enhancing preventive healthcare strategies, potentially leading to better patient outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
期刊最新文献
Reclassification of the conventional risk assessment for aging-related diseases by electrocardiogram-enabled biological age. Senolytic compounds reduce epigenetic age of blood samples in vitro. Knee adipose tissue: from its implication in osteoarthritis to its supposed role in tissue engineering. NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control. Clinical and biochemical factors associated with amygdalar metabolic activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1