Strain identity effects contribute more to Pseudomonas community functioning than strain interactions

Jos Kramer, Simon Maréchal, Alexandre R T Figueiredo, Rolf Kümmerli
{"title":"Strain identity effects contribute more to Pseudomonas community functioning than strain interactions","authors":"Jos Kramer, Simon Maréchal, Alexandre R T Figueiredo, Rolf Kümmerli","doi":"10.1093/ismejo/wraf025","DOIUrl":null,"url":null,"abstract":"Microbial communities can shape key ecological services, but the determinants of their functioning often remain little understood. While traditional research predominantly focuses on effects related to species identity (community composition and species richness), recent work increasingly explores the impact of species interactions on community functioning. Here, we conducted experiments with replicated small communities of Pseudomonas bacteria to quantify the relative importance of strain identity versus interaction effects on two important functions, community productivity and siderophore production. By combining supernatant and competition assays with an established linear model method, we show that both factors have significant effects on functioning, but identity effects generally outweigh strain interaction effects. These results hold irrespective of whether strain interactions are inferred statistically or approximated experimentally. Our results have implications for microbiome engineering, as the success of approaches aiming to induce beneficial (probiotic) strain interactions will be sensitive to strain identity effects in many communities.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial communities can shape key ecological services, but the determinants of their functioning often remain little understood. While traditional research predominantly focuses on effects related to species identity (community composition and species richness), recent work increasingly explores the impact of species interactions on community functioning. Here, we conducted experiments with replicated small communities of Pseudomonas bacteria to quantify the relative importance of strain identity versus interaction effects on two important functions, community productivity and siderophore production. By combining supernatant and competition assays with an established linear model method, we show that both factors have significant effects on functioning, but identity effects generally outweigh strain interaction effects. These results hold irrespective of whether strain interactions are inferred statistically or approximated experimentally. Our results have implications for microbiome engineering, as the success of approaches aiming to induce beneficial (probiotic) strain interactions will be sensitive to strain identity effects in many communities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain identity effects contribute more to Pseudomonas community functioning than strain interactions Occurrence of “under-the-radar” antibiotic resistance in anthropogenically affected produce Mechanisms of cooperation in the plants-arbuscular mycorrhizal fungi-bacteria continuum Metabolism of hemicelluloses by root-associated Bacteroidota species Active bacteria driving N2O mitigation and dissimilatory nitrate reduction to ammonium in ammonia recovery bioreactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1