Dystrophic epidermolysis bullosa - From biochemistry to interventions

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Matrix Biology Pub Date : 2025-02-06 DOI:10.1016/j.matbio.2025.02.001
Alexander Nyström
{"title":"Dystrophic epidermolysis bullosa - From biochemistry to interventions","authors":"Alexander Nyström","doi":"10.1016/j.matbio.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium –the epidermis to its mesenchyme – the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology – spanning its synthesis, assembly into suprastructures, and regulatory roles – enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"136 ","pages":"Pages 111-126"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000149","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium –the epidermis to its mesenchyme – the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology – spanning its synthesis, assembly into suprastructures, and regulatory roles – enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
萎缩性表皮松解症--从生物化学到干预措施
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matrix Biology
Matrix Biology 生物-生化与分子生物学
CiteScore
11.40
自引率
4.30%
发文量
77
审稿时长
45 days
期刊介绍: Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.
期刊最新文献
Dystrophic epidermolysis bullosa - From biochemistry to interventions Editorial Board Corrigendum to “Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signalling in ovarian cancer” [Matrix Biol. 81 (2019) 17-33] Alterations in the microenvironment of junctional epidermolysis bullosa keratinocytes: A gene expression study Fibrillin-1 G234D mutation in the hybrid1 domain causes tight skin associated with dysregulated elastogenesis and increased collagen cross-linking in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1