Effects of Weber number and hole location on subcritical curtain flow regimes

IF 3.6 2区 工程技术 Q1 MECHANICS International Journal of Multiphase Flow Pub Date : 2025-02-06 DOI:10.1016/j.ijmultiphaseflow.2025.105163
Alessandro Della Pia
{"title":"Effects of Weber number and hole location on subcritical curtain flow regimes","authors":"Alessandro Della Pia","doi":"10.1016/j.ijmultiphaseflow.2025.105163","DOIUrl":null,"url":null,"abstract":"<div><div>The flow regimes of a gravitational plane liquid jet (curtain) issuing into a quiescent gaseous ambient are investigated in subcritical conditions, namely for inlet Weber number <span><math><mrow><mi>W</mi><mi>e</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. By means of three-dimensional direct numerical simulations based on the volume-of-fluid method, steady curtain base flow solutions are obtained and excited by introducing hole perturbations, whose evolution is assessed by variation of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> (i.e. the hole initial location) parameters. Depending on the combination of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, three different flow regimes are observed. In the sheet (S) regime, the hole perturbation expands in the curtain and is convected downstream, generating secondary holes washed out at the domain outflow, leaving the curtain intact. In the transient columns (TC) regime, the secondary holes expand and merge with the primary hole, generating vertical liquid ligaments (columns) expelled from the domain in finite time, leaving the curtain again in its original state. In the columns (C) regime, the curtain finally exhibits a transition from the continuous sheet shape to a discrete permanent (i.e. stationary) columns pattern. The phase diagram of the curtain flow is drawn by representing all numerical results in the parameters space <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>-<span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>. It is found that the S, TC and C regimes are clustered into three distinct regions of the diagram by two theoretical curves, namely <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>: for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&gt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, the curtain is in the S regime; for <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub></mrow></math></span>, the TC regime is obtained; for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>, the curtain experiences a permanent rupture migrating to the C regime. The curve <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>c</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> represents the celebrated critical station, namely the streamwise location along the curtain where the local Weber number is equal to unity, and was derived in previous literature within the simplified inviscid one-dimensional flow assumption. The curve <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>W</mi><mi>e</mi><mo>)</mo></mrow></mrow></math></span> is here denoted as the breakup station, since for <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>&lt;</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span> the curtain undergoes permanent rupture, driven by the upstream retraction of the hole due to surface tension. It is found that <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mi>W</mi><mi>e</mi><mo>→</mo><mi>W</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub></mrow></math></span>. Therefore, the breakup Weber number found here (<span><math><mrow><mi>W</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>b</mi><mi>r</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>58</mn></mrow></math></span>) represents the maximum <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> at which the curtain transition from the sheet (S) to the columns (C) regime can be observed. The classifier role played by the theoretical 1D curves in clustering the numerical 3D phase diagram provides a connection between simplified linear one-dimensional theories and fully three-dimensional simulations of curtain flows.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"186 ","pages":"Article 105163"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The flow regimes of a gravitational plane liquid jet (curtain) issuing into a quiescent gaseous ambient are investigated in subcritical conditions, namely for inlet Weber number We<1. By means of three-dimensional direct numerical simulations based on the volume-of-fluid method, steady curtain base flow solutions are obtained and excited by introducing hole perturbations, whose evolution is assessed by variation of We and xh (i.e. the hole initial location) parameters. Depending on the combination of We and xh, three different flow regimes are observed. In the sheet (S) regime, the hole perturbation expands in the curtain and is convected downstream, generating secondary holes washed out at the domain outflow, leaving the curtain intact. In the transient columns (TC) regime, the secondary holes expand and merge with the primary hole, generating vertical liquid ligaments (columns) expelled from the domain in finite time, leaving the curtain again in its original state. In the columns (C) regime, the curtain finally exhibits a transition from the continuous sheet shape to a discrete permanent (i.e. stationary) columns pattern. The phase diagram of the curtain flow is drawn by representing all numerical results in the parameters space We-xh. It is found that the S, TC and C regimes are clustered into three distinct regions of the diagram by two theoretical curves, namely Xcr(We) and Xbr(We), where Xcr>Xbr: for xh>Xcr, the curtain is in the S regime; for Xbr<xh<Xcr, the TC regime is obtained; for xh<Xbr, the curtain experiences a permanent rupture migrating to the C regime. The curve Xcr(We) represents the celebrated critical station, namely the streamwise location along the curtain where the local Weber number is equal to unity, and was derived in previous literature within the simplified inviscid one-dimensional flow assumption. The curve Xbr(We) is here denoted as the breakup station, since for xh<Xbr the curtain undergoes permanent rupture, driven by the upstream retraction of the hole due to surface tension. It is found that Xbr0 for WeWebr. Therefore, the breakup Weber number found here (Webr0.58) represents the maximum We at which the curtain transition from the sheet (S) to the columns (C) regime can be observed. The classifier role played by the theoretical 1D curves in clustering the numerical 3D phase diagram provides a connection between simplified linear one-dimensional theories and fully three-dimensional simulations of curtain flows.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
期刊最新文献
Effects of Weber number and hole location on subcritical curtain flow regimes Wall model for large eddy simulations accounting for particle effect Editorial Board Double bursting jets from a suspended water drop under one cycle of oscillation Study on cavity evolution of asynchronous parallel high-speed vertical water entry of cylinders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1