{"title":"Thermodynamic modelling of Ga-Si nano phase diagram including shape effect","authors":"Seema, Chander Shekhar","doi":"10.1007/s11051-025-06241-1","DOIUrl":null,"url":null,"abstract":"<div><p>The silicon-gallium system’s nano-phase diagram, which takes into account the shape influence of the nanoparticles, has been evaluated for the first time using phase equilibrium and thermodynamic data. By using suitable thermodynamic models for the computation of the thermodynamic parameters, the impact of grain size has been taken into account. Ga nanoalloy has been studied in a variety of shapes, including icosahedral, spherical, hexahedral, octahedral, tetrahedral, film, and wire. The findings have been contrasted with data and empirical values from earlier research. It has been noted that thermodynamic characteristics such as the eutectic temperature, eutectic composition, and melting temperature of Si and Ga drop as particle size in the Ga–Si system decreases. The melting temperature of the nanoparticles is significantly influenced by the dimensions of the nanomaterials. The current work has made use of the dimension-based surface particle concentration, the total number of particles, and their relationship. Dimension of nanoparticles is important for analyzing their thermodynamic properties and phase diagram, in addition to their size.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06241-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The silicon-gallium system’s nano-phase diagram, which takes into account the shape influence of the nanoparticles, has been evaluated for the first time using phase equilibrium and thermodynamic data. By using suitable thermodynamic models for the computation of the thermodynamic parameters, the impact of grain size has been taken into account. Ga nanoalloy has been studied in a variety of shapes, including icosahedral, spherical, hexahedral, octahedral, tetrahedral, film, and wire. The findings have been contrasted with data and empirical values from earlier research. It has been noted that thermodynamic characteristics such as the eutectic temperature, eutectic composition, and melting temperature of Si and Ga drop as particle size in the Ga–Si system decreases. The melting temperature of the nanoparticles is significantly influenced by the dimensions of the nanomaterials. The current work has made use of the dimension-based surface particle concentration, the total number of particles, and their relationship. Dimension of nanoparticles is important for analyzing their thermodynamic properties and phase diagram, in addition to their size.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.