Early Sepsis Metabolic Changes in Kidney and Liver Precede Clinical Evidence of Organ Dysfunction.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY American Journal of Respiratory Cell and Molecular Biology Pub Date : 2025-02-07 DOI:10.1165/rcmb.2024-0391OC
Marc R McCann, Christopher Fry, Michael D Maile, Evan A Farkash, Brandon C Cummings, Thomas L Flott, Laura McLellan, Michael A Puskarich, Alan E Jones, Michael W Sjoding, Jean Nemzek, Robert P Dickson, Kathleen A Stringer
{"title":"Early Sepsis Metabolic Changes in Kidney and Liver Precede Clinical Evidence of Organ Dysfunction.","authors":"Marc R McCann, Christopher Fry, Michael D Maile, Evan A Farkash, Brandon C Cummings, Thomas L Flott, Laura McLellan, Michael A Puskarich, Alan E Jones, Michael W Sjoding, Jean Nemzek, Robert P Dickson, Kathleen A Stringer","doi":"10.1165/rcmb.2024-0391OC","DOIUrl":null,"url":null,"abstract":"<p><p>Organ-specific metabolic pathways, including those related to mitochondrial metabolism, could provide insight to mechanisms underlying sepsis-induced organ dysfunction. However, it remains unclear if metabolic changes result from or precede clinical organ dysfunction. To determine if blood levels of the mitochondrial metabolites acetylcarnitine and L-carnitine correlate with organ-specific signals of sepsis-induced dysfunction, we performed a series of translational analyses of two cohorts of human sepsis and experiments using a murine model of polymicrobial sepsis. We evaluated the association between mitochondrial metabolites and clinical indices of organ function. In the blood of patients with sepsis or septic shock, we found metabolic signals of dysfunctional mitochondrial b-oxidation that were correlated with clinical measures of renal and liver dysfunction. The relevance of these findings was corroborated in an experimental model that showed distinct patterns of change in organ metabolism that correlated with the blood acetylcarnitine to L-carnitine ratio. In addition, sepsis-induced changes in organ metabolism were distinct in the liver and kidney highlighting the unique energy economies of each organ. Importantly, metabolic changes preceded changes in clinical indices of organ function and histological evidence of cellular apoptosis. Based on these findings, sepsis-induced disruption in blood levels of specific metabolites could serve as more physiologically relevant indicators of early organ dysfunction than those we presently use. These early metabolite signals provide mechanistic insights to altered metabolism that may hold the key to timely identification of impending organ dysfunction. This could lead to strategies directed at the interruption of sepsis-induced organ failure.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0391OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organ-specific metabolic pathways, including those related to mitochondrial metabolism, could provide insight to mechanisms underlying sepsis-induced organ dysfunction. However, it remains unclear if metabolic changes result from or precede clinical organ dysfunction. To determine if blood levels of the mitochondrial metabolites acetylcarnitine and L-carnitine correlate with organ-specific signals of sepsis-induced dysfunction, we performed a series of translational analyses of two cohorts of human sepsis and experiments using a murine model of polymicrobial sepsis. We evaluated the association between mitochondrial metabolites and clinical indices of organ function. In the blood of patients with sepsis or septic shock, we found metabolic signals of dysfunctional mitochondrial b-oxidation that were correlated with clinical measures of renal and liver dysfunction. The relevance of these findings was corroborated in an experimental model that showed distinct patterns of change in organ metabolism that correlated with the blood acetylcarnitine to L-carnitine ratio. In addition, sepsis-induced changes in organ metabolism were distinct in the liver and kidney highlighting the unique energy economies of each organ. Importantly, metabolic changes preceded changes in clinical indices of organ function and histological evidence of cellular apoptosis. Based on these findings, sepsis-induced disruption in blood levels of specific metabolites could serve as more physiologically relevant indicators of early organ dysfunction than those we presently use. These early metabolite signals provide mechanistic insights to altered metabolism that may hold the key to timely identification of impending organ dysfunction. This could lead to strategies directed at the interruption of sepsis-induced organ failure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
期刊最新文献
(Inter)feron the Reaper: New Insights on an Old Cytokine in Secondary Bacterial Pneumonia. Breathing New Life into PAH Treatment: Targeting Serotonin Synthesis with an Inhalation Approach. Early Sepsis Metabolic Changes in Kidney and Liver Precede Clinical Evidence of Organ Dysfunction. Short Term Acid Sphingomyelinase Deficiency Exerts Proinflammatory and Antiapoptotic Effects During LPS-induced Lung Injury in Mice. Don't Just Do Something, Stand There: Pressing Pause on Acetaminophen Use in Infants and Children.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1