Hfq influences ciprofloxacin accumulation in Escherichia coli independently of ompC and ompF post-transcriptional regulation.

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Genetics Pub Date : 2025-02-08 DOI:10.1007/s13353-025-00945-9
Florian Turbant, Natalia Lewandowska, Sylwia Bloch, Frank Wien, Hugo Chauvet, Grzegorz Węgrzyn, Véronique Arluison
{"title":"Hfq influences ciprofloxacin accumulation in Escherichia coli independently of ompC and ompF post-transcriptional regulation.","authors":"Florian Turbant, Natalia Lewandowska, Sylwia Bloch, Frank Wien, Hugo Chauvet, Grzegorz Węgrzyn, Véronique Arluison","doi":"10.1007/s13353-025-00945-9","DOIUrl":null,"url":null,"abstract":"<p><p>The antibiotic resistance of pathogenic bacteria is currently one of the major problems in medicine, and finding novel antibacterial agents is one of the most difficult tasks in the field of biomedical sciences. Studies on such tasks can be successful only if genetic and molecular mechanisms leading to antibiotic resistance/sensitivity are understood. Previous reports indicated that the bacterial protein Hfq, discovered as an RNA chaperone but subsequently demonstrated to play also other functions in cells, is involved in the mechanisms of the response of bacterial cells to antibiotics. Recently, it was found that Hfq dysfunction resulted in more effective accumulation of an antibiotic ciprofloxacin in Escherichia coli cells irrespective of the presence or absence of the AcrB efflux pump. However, small RNA-mediated impairment of expression of the ompF gene, which encodes a porin involved in antibiotics influx, reversed the effects of the absence of Hfq on the antibiotic accumulation. This led to the hypothesis that Hfq might influence ciprofloxacin accumulation in the manner independent on its RNA chaperone function, as this protein might also influence cellular membrane structure and functions. Here, we demonstrate that in ompC and ompF mutants of E. coli, accumulation of ciprofloxacin is significantly impaired in the absence of Hfq or its C-terminal domain. These results corroborate the above-mentioned hypothesis on a sRNA-independent mechanism of Hfq-mediated modulation of the antibiotic transmembrane transport. Since fluoroquinolones use both protein- and lipid-mediated pathways to cross the outer membrane, Hfq may influence both processes. This possibility will be discussed herein.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-025-00945-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The antibiotic resistance of pathogenic bacteria is currently one of the major problems in medicine, and finding novel antibacterial agents is one of the most difficult tasks in the field of biomedical sciences. Studies on such tasks can be successful only if genetic and molecular mechanisms leading to antibiotic resistance/sensitivity are understood. Previous reports indicated that the bacterial protein Hfq, discovered as an RNA chaperone but subsequently demonstrated to play also other functions in cells, is involved in the mechanisms of the response of bacterial cells to antibiotics. Recently, it was found that Hfq dysfunction resulted in more effective accumulation of an antibiotic ciprofloxacin in Escherichia coli cells irrespective of the presence or absence of the AcrB efflux pump. However, small RNA-mediated impairment of expression of the ompF gene, which encodes a porin involved in antibiotics influx, reversed the effects of the absence of Hfq on the antibiotic accumulation. This led to the hypothesis that Hfq might influence ciprofloxacin accumulation in the manner independent on its RNA chaperone function, as this protein might also influence cellular membrane structure and functions. Here, we demonstrate that in ompC and ompF mutants of E. coli, accumulation of ciprofloxacin is significantly impaired in the absence of Hfq or its C-terminal domain. These results corroborate the above-mentioned hypothesis on a sRNA-independent mechanism of Hfq-mediated modulation of the antibiotic transmembrane transport. Since fluoroquinolones use both protein- and lipid-mediated pathways to cross the outer membrane, Hfq may influence both processes. This possibility will be discussed herein.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Genetics
Journal of Applied Genetics 生物-生物工程与应用微生物
CiteScore
4.30
自引率
4.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.
期刊最新文献
Hfq influences ciprofloxacin accumulation in Escherichia coli independently of ompC and ompF post-transcriptional regulation. Scope for a threshold animal model for genetic evaluation for hip dysplasia. QTL mapping of Fusarium ear rot resistance using genotyping by target sequencing (GBTS) in maize. Correction to: The analysis of transcriptomic signature of TNBC-searching for the potential RNA‑based predictive biomarkers to determine the chemotherapy sensitivity. Bioinformatics to analyze the differentially expressed genes in different degrees of Alzheimer's disease and their roles in progress of the disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1