{"title":"Numerical modeling of giant pore formation in vesicles under msPEF-induced electroporation: Role of charging time and waveform","authors":"Nalinikanta Behera, Rochish M. Thaokar","doi":"10.1016/j.bioelechem.2025.108926","DOIUrl":null,"url":null,"abstract":"<div><div>Giant unilamellar vesicle is the closest prototypical model for investigating membrane electrodeformation and electroporation in biological cells. This work employs numerical simulations to investigate the effect of membrane charging time on vesicle electroporation under milli-second pulsed-electric-field (msPEF) of different waveforms. Our numerical approach, which implements the effect of electric stretching on membrane tension and precise calculation of pore energy, successfully predicts the formation of giant pores of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> size as observed in previous experiments. The poration zone is found to extend up to certain angles as measured from the poles, termed critical angles. An increase in charging time delays pore formation, decreases the pore density, and trims down the poration zone. Counterintuitively, this effect promotes significant pore growth. Moreover, there exists a cut-off charging time above which pore formation is completely inhibited. This phenomenon is particularly pronounced with square bipolar pulses. Comparisons with the previous experimental results reveal that electrodeformation-poration-induced membrane surface area variation and that induced only by electroporation evolves in a similar fashion. Therefore, although the agreements are qualitative, the present electroporation model can be used as the simplest tool to predict the evolution of vesicles under electric pulses in laboratory experiments.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"164 ","pages":"Article 108926"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000295","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Giant unilamellar vesicle is the closest prototypical model for investigating membrane electrodeformation and electroporation in biological cells. This work employs numerical simulations to investigate the effect of membrane charging time on vesicle electroporation under milli-second pulsed-electric-field (msPEF) of different waveforms. Our numerical approach, which implements the effect of electric stretching on membrane tension and precise calculation of pore energy, successfully predicts the formation of giant pores of size as observed in previous experiments. The poration zone is found to extend up to certain angles as measured from the poles, termed critical angles. An increase in charging time delays pore formation, decreases the pore density, and trims down the poration zone. Counterintuitively, this effect promotes significant pore growth. Moreover, there exists a cut-off charging time above which pore formation is completely inhibited. This phenomenon is particularly pronounced with square bipolar pulses. Comparisons with the previous experimental results reveal that electrodeformation-poration-induced membrane surface area variation and that induced only by electroporation evolves in a similar fashion. Therefore, although the agreements are qualitative, the present electroporation model can be used as the simplest tool to predict the evolution of vesicles under electric pulses in laboratory experiments.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.