Erhui Sun , Josue Camacho-Arreguin , Junfu Zhou , Max Liebenschutz-Jones , Tianyi Zeng , Max Keedwell , Dragos Axinte , Andy Norton , Abdelkhalick Mohammad
{"title":"Macro-mini collaborative manipulator system for welding in confined environments","authors":"Erhui Sun , Josue Camacho-Arreguin , Junfu Zhou , Max Liebenschutz-Jones , Tianyi Zeng , Max Keedwell , Dragos Axinte , Andy Norton , Abdelkhalick Mohammad","doi":"10.1016/j.rcim.2025.102975","DOIUrl":null,"url":null,"abstract":"<div><div>Welding plays an important role in a wide range of industries, including aviation, aerospace, automobile manufacturing, and nuclear and chemical plants, all of which contain critical industrial assets. However, confined spaces and complex structures in these environments severely restrict the accessibility and functionality of in-situ welding tasks. Therefore, to enable welding operations in constrained spaces, a macro-mini collaborative manipulator system with multiple Degrees of Freedom (multi-DoF) is proposed in this paper. The collaborative system consists of a 6-DoF macro robotic arm and a novel 2-DoF slim mini manipulator. The macro manipulator (i.e., the robotic arm) provides large-scale movement to position the slim mini manipulator within confined environments. The slim mini manipulator, which features a novel serial mechanism, then adjusts and controls the pose of the end-effector (welding torch) to perform welding tasks in spaces that the macro manipulator cannot access. Given the novel design of the mini manipulator, kinematic and Jacobian modelling have been developed to enable intimate and accurate control of the collaborative welding system. The collaboration between the macro and mini manipulators occurs not only for individual movements but also at the level when compensatory movements are performed on each system to enable error compensation for the end-effector (i.e., welding torch). Finally, validation experiments of the collaborative manipulator system have been conducted in confined scenarios to verify its functionality and performance.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"94 ","pages":"Article 102975"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584525000298","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Welding plays an important role in a wide range of industries, including aviation, aerospace, automobile manufacturing, and nuclear and chemical plants, all of which contain critical industrial assets. However, confined spaces and complex structures in these environments severely restrict the accessibility and functionality of in-situ welding tasks. Therefore, to enable welding operations in constrained spaces, a macro-mini collaborative manipulator system with multiple Degrees of Freedom (multi-DoF) is proposed in this paper. The collaborative system consists of a 6-DoF macro robotic arm and a novel 2-DoF slim mini manipulator. The macro manipulator (i.e., the robotic arm) provides large-scale movement to position the slim mini manipulator within confined environments. The slim mini manipulator, which features a novel serial mechanism, then adjusts and controls the pose of the end-effector (welding torch) to perform welding tasks in spaces that the macro manipulator cannot access. Given the novel design of the mini manipulator, kinematic and Jacobian modelling have been developed to enable intimate and accurate control of the collaborative welding system. The collaboration between the macro and mini manipulators occurs not only for individual movements but also at the level when compensatory movements are performed on each system to enable error compensation for the end-effector (i.e., welding torch). Finally, validation experiments of the collaborative manipulator system have been conducted in confined scenarios to verify its functionality and performance.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.