Mitochondria-targeted photothermal-chemodynamic therapy enhances checkpoint blockade immunotherapy on colon cancer

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2025-02-04 DOI:10.1016/j.mtbio.2025.101542
Benchao Zheng , Hongbo Wang , Shiyi Zhai , Jiangsheng Li , Kuangda Lu
{"title":"Mitochondria-targeted photothermal-chemodynamic therapy enhances checkpoint blockade immunotherapy on colon cancer","authors":"Benchao Zheng ,&nbsp;Hongbo Wang ,&nbsp;Shiyi Zhai ,&nbsp;Jiangsheng Li ,&nbsp;Kuangda Lu","doi":"10.1016/j.mtbio.2025.101542","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy has emerged as a hotspot for cancer treatment. However, the response rate of monotherapy remains relatively low in clinical settings. Photothermal therapy (PTT), which employs light energy to ablate tumors, can also activate tumor-specific immune responses. This effect has been attributed in several studies to the release of damage-associated molecular patterns (DAMPs) triggered by mitochondrial injury. We propose that mitochondria-targeted PTT may better synergize with immunotherapy. Herein, we constructed a multifunctional nanoplatform that enables mitochondria-targeted photothermal-chemodynamic combination therapy by conjugating indocyanine green-thiol (ICG-SH) and mercaptoethyl-triphenylphosphonium (TPP-SH) onto polyvinyl pyrrolidone (PVP)-coated gold-copper nanoparticles (AIT). Upon near-infrared light (NIR) irradiation, AIT ablates cancer cells and amplifies the effect of chemodynamic therapy (CDT), thereby inducing apoptosis in the tumor. The combination of CDT and PTT promotes immunogenic cell death, which could synergize with checkpoint blockade immunotherapy. In a bilateral mouse colon cancer model, we observed complete eradication of light-irradiated primary tumors and significant inhibition of distant untreated tumors in the group treated with AIT plus anti-PD-1 (αPD-1). We found a significant increase in serum levels of pro-inflammatory factors, including interleukin-6 (IL-6), interferon-<em>γ</em> (IFN-<em>γ</em>), and tumor necrosis factor-<em>α</em> (TNF-<em>α</em>), following PTT/CDT/immunotherapy treatment, suggesting effective activation of the immune response. The enhanced immunogenicity caused by AIT with αPD-1 treatment resulted in efficient antigen presentation, as indicated by the increased infiltration of dendritic cells (DCs) into the tumor-draining lymph nodes (LNs). We also observed enhanced infiltration of CD8<sup>+</sup> T cells in distant tumors in the AIT with αPD-1 group compared to αPD-1 alone. Hence, mitochondria-targeting represents an effective strategy to potentiate the combination of photothermal, chemodynamic, and immune checkpoint blockade therapies for the treatment of metastatic cancer.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"31 ","pages":"Article 101542"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425001000","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy has emerged as a hotspot for cancer treatment. However, the response rate of monotherapy remains relatively low in clinical settings. Photothermal therapy (PTT), which employs light energy to ablate tumors, can also activate tumor-specific immune responses. This effect has been attributed in several studies to the release of damage-associated molecular patterns (DAMPs) triggered by mitochondrial injury. We propose that mitochondria-targeted PTT may better synergize with immunotherapy. Herein, we constructed a multifunctional nanoplatform that enables mitochondria-targeted photothermal-chemodynamic combination therapy by conjugating indocyanine green-thiol (ICG-SH) and mercaptoethyl-triphenylphosphonium (TPP-SH) onto polyvinyl pyrrolidone (PVP)-coated gold-copper nanoparticles (AIT). Upon near-infrared light (NIR) irradiation, AIT ablates cancer cells and amplifies the effect of chemodynamic therapy (CDT), thereby inducing apoptosis in the tumor. The combination of CDT and PTT promotes immunogenic cell death, which could synergize with checkpoint blockade immunotherapy. In a bilateral mouse colon cancer model, we observed complete eradication of light-irradiated primary tumors and significant inhibition of distant untreated tumors in the group treated with AIT plus anti-PD-1 (αPD-1). We found a significant increase in serum levels of pro-inflammatory factors, including interleukin-6 (IL-6), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), following PTT/CDT/immunotherapy treatment, suggesting effective activation of the immune response. The enhanced immunogenicity caused by AIT with αPD-1 treatment resulted in efficient antigen presentation, as indicated by the increased infiltration of dendritic cells (DCs) into the tumor-draining lymph nodes (LNs). We also observed enhanced infiltration of CD8+ T cells in distant tumors in the AIT with αPD-1 group compared to αPD-1 alone. Hence, mitochondria-targeting represents an effective strategy to potentiate the combination of photothermal, chemodynamic, and immune checkpoint blockade therapies for the treatment of metastatic cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
Sustained slow-release TGF-β3 in a three-dimensional-printed titanium microporous scaffold composite system promotes ligament-to-bone healing Recent advances in nanomaterials and their mechanisms for infected wounds management A one-two punch of inflammation and oxidative stress promotes revascularization for diabetic foot ulcers Mitochondria-targeted photothermal-chemodynamic therapy enhances checkpoint blockade immunotherapy on colon cancer The anti-depression effect and mechanism of harmonious rosemary essential oil and its application in microcapsules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1