U-NET-based deep learning for automated detection of lathe checks in homogeneous wood veneers

IF 2.4 3区 农林科学 Q1 FORESTRY European Journal of Wood and Wood Products Pub Date : 2025-02-10 DOI:10.1007/s00107-025-02208-0
Caroline Marc, Bertrand Marcon, Louis Denaud, Stéphane Girardon
{"title":"U-NET-based deep learning for automated detection of lathe checks in homogeneous wood veneers","authors":"Caroline Marc,&nbsp;Bertrand Marcon,&nbsp;Louis Denaud,&nbsp;Stéphane Girardon","doi":"10.1007/s00107-025-02208-0","DOIUrl":null,"url":null,"abstract":"<div><p>Automated detection of lathe checks in wood veneers presents significant challenges due to their variability and the natural properties of wood. This study explores the use of two convolutional neural networks (U-Net architecture) to enhance the precision and efficiency of lathe checks detection in poplar veneers. The approach involves sequential application of two U-Nets: the first for detecting lathe checks through semantic segmentation, and the second for refining these predictions by connecting fragmented lathe checks. Post-processing techniques are applied to denoise the mappings and extract precise lathe check characteristics. The first U-Net demonstrated strong performance in predicting lathe check presence, with precision and recall scores of 0.822 and 0.835, respectively. The second U-Net refined predictions by linking disjointed segments, improving the overall lathe checks mapping process. Comparative analysis with manual methods revealed comparable or superior performance of the automated approach, especially for shallow lathe checks. The results highlight the potential of the proposed method for efficient and reliable lathe check detection in wood veneers.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00107-025-02208-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02208-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated detection of lathe checks in wood veneers presents significant challenges due to their variability and the natural properties of wood. This study explores the use of two convolutional neural networks (U-Net architecture) to enhance the precision and efficiency of lathe checks detection in poplar veneers. The approach involves sequential application of two U-Nets: the first for detecting lathe checks through semantic segmentation, and the second for refining these predictions by connecting fragmented lathe checks. Post-processing techniques are applied to denoise the mappings and extract precise lathe check characteristics. The first U-Net demonstrated strong performance in predicting lathe check presence, with precision and recall scores of 0.822 and 0.835, respectively. The second U-Net refined predictions by linking disjointed segments, improving the overall lathe checks mapping process. Comparative analysis with manual methods revealed comparable or superior performance of the automated approach, especially for shallow lathe checks. The results highlight the potential of the proposed method for efficient and reliable lathe check detection in wood veneers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Wood and Wood Products
European Journal of Wood and Wood Products 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
3.80%
发文量
124
审稿时长
6.0 months
期刊介绍: European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets. European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.
期刊最新文献
U-NET-based deep learning for automated detection of lathe checks in homogeneous wood veneers Estimation of the high-cycle fatigue behaviour of timber connections with inclined screws under tension Moisture distribution in cross laminated timber (CLT) made from heat-treated wood WD Detector: deep learning-based hybrid sensor design for wood defect detection Nanocellulose functionalized with ethylenediamine as a modifier of urea-formaldehyde adhesive in particleboard production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1