S. E. Rigby, E. Mendham, D. G. Farrimond, E. G. Pickering, A. Tyas, G. Pezzola
{"title":"An empirical method for modelling the secondary shock from high explosives in the far-field","authors":"S. E. Rigby, E. Mendham, D. G. Farrimond, E. G. Pickering, A. Tyas, G. Pezzola","doi":"10.1007/s00193-024-01208-y","DOIUrl":null,"url":null,"abstract":"<div><p>As the detonation product cloud from a high explosive detonation expands, an arresting flow is generated at the interface between these products and the surrounding air. Eventually this flow forms an inward-travelling shock wave which coalesces at the origin and reflects outwards as a secondary shock. Whilst this feature is well known and often reported, there remains no established method for predicting the form and magnitude of the secondary shock. This paper details an empirical superposition method for modelling the secondary shock, based on the physical analogy of the secondary loading pulse resembling the blast load from a smaller explosive relative to the original. This so-called dummy charge mass is determined from 58 experimental tests using PE4, PE8, and PE10, utilising Monte Carlo sampling to account for experimental uncertainty, and is found to range between 3.2–4.9% of the original charge mass. A further 18 “unseen” datapoints are used to rigorously assess the performance of the new model, and it is found that reductions in mean absolute error of up to 40%, and typically 20%, are achieved compared to the standard model which neglects the secondary shock. Accuracy of the model is demonstrated across a comprehensive range of far-field scaled distances, giving a high degree of confidence in the new empirical method for modelling the secondary shock from high explosives.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"35 1","pages":"1 - 16"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01208-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01208-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
As the detonation product cloud from a high explosive detonation expands, an arresting flow is generated at the interface between these products and the surrounding air. Eventually this flow forms an inward-travelling shock wave which coalesces at the origin and reflects outwards as a secondary shock. Whilst this feature is well known and often reported, there remains no established method for predicting the form and magnitude of the secondary shock. This paper details an empirical superposition method for modelling the secondary shock, based on the physical analogy of the secondary loading pulse resembling the blast load from a smaller explosive relative to the original. This so-called dummy charge mass is determined from 58 experimental tests using PE4, PE8, and PE10, utilising Monte Carlo sampling to account for experimental uncertainty, and is found to range between 3.2–4.9% of the original charge mass. A further 18 “unseen” datapoints are used to rigorously assess the performance of the new model, and it is found that reductions in mean absolute error of up to 40%, and typically 20%, are achieved compared to the standard model which neglects the secondary shock. Accuracy of the model is demonstrated across a comprehensive range of far-field scaled distances, giving a high degree of confidence in the new empirical method for modelling the secondary shock from high explosives.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.