Model-Informed Selection of the Recommended Phase 2 Dosage for Anti-TIGIT Immunotherapy Leveraging co-Expressed PD-1 Inhibitor Target Engagement.

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Clinical Pharmacology & Therapeutics Pub Date : 2025-02-08 DOI:10.1002/cpt.3590
Irina Kareva, Ping Hu, Vadryn Pierre, Thomas Kitzing, Anja Victor, Emilia Richter, Wei Gao, Karthik Venkatakrishnan, Anup Zutshi
{"title":"Model-Informed Selection of the Recommended Phase 2 Dosage for Anti-TIGIT Immunotherapy Leveraging co-Expressed PD-1 Inhibitor Target Engagement.","authors":"Irina Kareva, Ping Hu, Vadryn Pierre, Thomas Kitzing, Anja Victor, Emilia Richter, Wei Gao, Karthik Venkatakrishnan, Anup Zutshi","doi":"10.1002/cpt.3590","DOIUrl":null,"url":null,"abstract":"<p><p>Refining dose projections requires a deep understanding of drug-target relationships at the site of action, which is often challenging to achieve. Here we present a case study of how one can refine dose projections for a TIGIT-targeted immunotherapy by leveraging information from the well-studied PD-1 pathway since the co-expression of PD-1 and TIGIT on immune cells provides a unique opportunity to extrapolate data from one target to inform the dosing strategy for the other. We develop a fit-for-purpose mathematical model that captures the experimentally observed relationship between the concentration of a mouse PD-1 antagonist in the plasma and PD-1 target engagement within the tumor microenvironment (TME). We then assess the applicability of this PD-1 model to elucidate the relationship between drug concentration and target engagement for tiragolumab, an anti-TIGIT antibody, across various doses. This analysis aims to refine our understanding of the dose-response relationship for targeting TIGIT, a critical step in optimizing therapeutic efficacy, without conducting additional experiments. The approach is then extended to project efficacious doses for M6223, another anti-TIGIT antibody, using the established PD-1 model, by leveraging the M6223 clinical PK and PD data, as well as virtual population analysis. This work provides a case study of a possible framework for refining dose projections via quantitative estimation of drug-target relationship at the site of action by leveraging established drug-target relationships. Through extrapolating information from a well-characterized pathway, we offer a method to inform dose optimization strategies with limited data using model-informed drug development.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3590","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Refining dose projections requires a deep understanding of drug-target relationships at the site of action, which is often challenging to achieve. Here we present a case study of how one can refine dose projections for a TIGIT-targeted immunotherapy by leveraging information from the well-studied PD-1 pathway since the co-expression of PD-1 and TIGIT on immune cells provides a unique opportunity to extrapolate data from one target to inform the dosing strategy for the other. We develop a fit-for-purpose mathematical model that captures the experimentally observed relationship between the concentration of a mouse PD-1 antagonist in the plasma and PD-1 target engagement within the tumor microenvironment (TME). We then assess the applicability of this PD-1 model to elucidate the relationship between drug concentration and target engagement for tiragolumab, an anti-TIGIT antibody, across various doses. This analysis aims to refine our understanding of the dose-response relationship for targeting TIGIT, a critical step in optimizing therapeutic efficacy, without conducting additional experiments. The approach is then extended to project efficacious doses for M6223, another anti-TIGIT antibody, using the established PD-1 model, by leveraging the M6223 clinical PK and PD data, as well as virtual population analysis. This work provides a case study of a possible framework for refining dose projections via quantitative estimation of drug-target relationship at the site of action by leveraging established drug-target relationships. Through extrapolating information from a well-characterized pathway, we offer a method to inform dose optimization strategies with limited data using model-informed drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
期刊最新文献
Franchise Data Strategy: "PIVOT"ing from Cognitive Dissonance toward Making What Is Implicit, Explicit. Chat GPT vs. Clinical Decision Support Systems in the Analysis of Drug-Drug Interactions. Optimal Dosing Regimen for Epcoritamab, a Subcutaneous Bispecific Antibody, in Relapsed or Refractory Large B-Cell Lymphoma. Optimal Drug, Optimal Dose, or Both in the Pharmacological Treatment of Neonatal Opioid Withdrawal Syndrome? Population-Based Validation Results From the Drug Repurposing for Effective Alzheimer's Medicines (DREAM) Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1