Microvascular structure variability explains variance in fMRI functional connectivity.

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Brain Structure & Function Pub Date : 2025-02-08 DOI:10.1007/s00429-025-02899-4
François Gaudreault, Michèle Desjardins
{"title":"Microvascular structure variability explains variance in fMRI functional connectivity.","authors":"François Gaudreault, Michèle Desjardins","doi":"10.1007/s00429-025-02899-4","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of regional brain vasculature on resting-state fMRI BOLD signals is well documented. However, the role of brain vasculature is often overlooked in functional connectivity research. In the present report, utilizing publicly available whole-brain vasculature data in the mouse, we investigate the relationship between functional connectivity and brain vasculature. This is done by assessing interregional variations in vasculature through a novel metric termed vascular similarity. First, we identify features to describe the regional vasculature. Then, we employ multiple linear regression models to predict functional connectivity, incorporating vascular similarity alongside metrics from structural connectivity and spatial topology. Our findings reveal a significant correlation between functional connectivity strength and regional vasculature similarity, especially in anesthetized mice. We also show that multiple linear regression models of functional connectivity using standard predictors are improved by including vascular similarity. We perform this analysis at the cerebrum and whole-brain levels using data from both male and female mice. Our findings regarding the relation between functional connectivity and the underlying vascular anatomy may enhance our understanding of functional connectivity based on fMRI and provide insights into its disruption in neurological disorders.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 2","pages":"39"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02899-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of regional brain vasculature on resting-state fMRI BOLD signals is well documented. However, the role of brain vasculature is often overlooked in functional connectivity research. In the present report, utilizing publicly available whole-brain vasculature data in the mouse, we investigate the relationship between functional connectivity and brain vasculature. This is done by assessing interregional variations in vasculature through a novel metric termed vascular similarity. First, we identify features to describe the regional vasculature. Then, we employ multiple linear regression models to predict functional connectivity, incorporating vascular similarity alongside metrics from structural connectivity and spatial topology. Our findings reveal a significant correlation between functional connectivity strength and regional vasculature similarity, especially in anesthetized mice. We also show that multiple linear regression models of functional connectivity using standard predictors are improved by including vascular similarity. We perform this analysis at the cerebrum and whole-brain levels using data from both male and female mice. Our findings regarding the relation between functional connectivity and the underlying vascular anatomy may enhance our understanding of functional connectivity based on fMRI and provide insights into its disruption in neurological disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
期刊最新文献
Microvascular structure variability explains variance in fMRI functional connectivity. Expression of synaptic proteins and development of dendritic spines in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Gyral peak variations between HCP and CHCP: functional and structural implications. Decreases in frequency-dependent intrinsic activity of the default mode network are associated with depression and cognition in patients with postacute sequelae of SARS-CoV-2 infection. rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1