The Hippo effector TEAD1 regulates postnatal murine cerebellar development.

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Brain Structure & Function Pub Date : 2025-03-10 DOI:10.1007/s00429-025-02903-x
Cooper Atterton, Alexandra Pelenyi, Justin Jones, Laura Currey, Majd Al-Khalily, Lucinda Wright, Mikki Doonan, David Knight, Nyoman D Kurniawan, Shaun Walters, Stefan Thor, Michael Piper
{"title":"The Hippo effector TEAD1 regulates postnatal murine cerebellar development.","authors":"Cooper Atterton, Alexandra Pelenyi, Justin Jones, Laura Currey, Majd Al-Khalily, Lucinda Wright, Mikki Doonan, David Knight, Nyoman D Kurniawan, Shaun Walters, Stefan Thor, Michael Piper","doi":"10.1007/s00429-025-02903-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Hippo signalling cascade is an evolutionarily conserved pathway critical for the development of numerous organ systems and is required for the development of many parts of the mammalian nervous system, including the cerebellum. The Hippo pathway converges, via the nuclear YAP/TAZ co-transcription factors, on transcription factors of the TEA Domain (TEAD) family (TEAD1-4) and promotes the expression of pro-proliferative genes. Despite the importance of TEAD function, our understanding of spatial and temporal expression of this family is limited, as is our understanding of which TEAD family members regulate Hippo-dependent organ development. Here, we focus on TEAD1 and how this factor contributes to postnatal murine cerebellar development. We find expression of TEAD1 within cerebellar progenitor cells and glial cells, including astrocytes and Bergmann glia, as well as by some interneurons within the granular layer. The importance of TEAD1 expression for cerebellar development was investigated using a conditional ablation approach, which revealed a range of developmental deficits in Tead1 mutants, including an underdeveloped cerebellum, morphological defects in Bergmann Glia and Purkinje Neurons, as well as granule neuron migration defects. Collectively, these findings suggest a major role for TEAD1 as an effector of the Hippo pathway during cerebellar development.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 3","pages":"42"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02903-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Hippo signalling cascade is an evolutionarily conserved pathway critical for the development of numerous organ systems and is required for the development of many parts of the mammalian nervous system, including the cerebellum. The Hippo pathway converges, via the nuclear YAP/TAZ co-transcription factors, on transcription factors of the TEA Domain (TEAD) family (TEAD1-4) and promotes the expression of pro-proliferative genes. Despite the importance of TEAD function, our understanding of spatial and temporal expression of this family is limited, as is our understanding of which TEAD family members regulate Hippo-dependent organ development. Here, we focus on TEAD1 and how this factor contributes to postnatal murine cerebellar development. We find expression of TEAD1 within cerebellar progenitor cells and glial cells, including astrocytes and Bergmann glia, as well as by some interneurons within the granular layer. The importance of TEAD1 expression for cerebellar development was investigated using a conditional ablation approach, which revealed a range of developmental deficits in Tead1 mutants, including an underdeveloped cerebellum, morphological defects in Bergmann Glia and Purkinje Neurons, as well as granule neuron migration defects. Collectively, these findings suggest a major role for TEAD1 as an effector of the Hippo pathway during cerebellar development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
期刊最新文献
Common and sex-specific differences in hypothalamic subunit volumes and their links with depressive symptoms in treatment-naïve patients with major depressive disorder. The Hippo effector TEAD1 regulates postnatal murine cerebellar development. Structural plasticity of pyramidal cell neurons measured after FLASH and conventional dose-rate irradiation. Examining neuroanatomical correlates of win-stay, lose-shift behaviour. Microvascular structure variability explains variance in fMRI functional connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1