Examining the bias-efficiency tradeoff from incorporation of nonconcurrent controls in platform trials: A simulation study example from the adaptive COVID-19 treatment trial.

IF 2.2 3区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Clinical Trials Pub Date : 2025-02-08 DOI:10.1177/17407745251313928
Tyler Bonnett, Gail E Potter, Lori E Dodd
{"title":"Examining the bias-efficiency tradeoff from incorporation of nonconcurrent controls in platform trials: A simulation study example from the adaptive COVID-19 treatment trial.","authors":"Tyler Bonnett, Gail E Potter, Lori E Dodd","doi":"10.1177/17407745251313928","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Platform trials typically feature a shared control arm and multiple experimental treatment arms. Staggered entry and exit of arms splits the control group into two cohorts: those randomized during the same period in which the experimental arm was open (concurrent controls) and those randomized outside that period (nonconcurrent controls). Combining these control groups may offer increased statistical power but can lead to bias if analyses do not account for time trends in the response variable. Proposed methods of adjustment for time may increase type I error rates when time trends impact arms unequally or when large, sudden changes to the response rate occur. However, there has been limited exploration of the degree of type I error inflation one can plausibly expect in real-world scenarios.</p><p><strong>Methods: </strong>We use data from the Adaptive COVID-19 Treatment Trial (ACTT) to mimic a realistic platform trial with a remdesivir control arm. We compare four strategies for estimating the effect of interferon beta-1a (the ACTT-3 experimental arm) relative to remdesivir (data from ACTT-1, ACTT-2, and ACTT-3) on recovery and death by day 29: utilizing concurrent controls only (the prespecified analysis), pooling all remdesivir arm data without adjustment (the \"unadjusted-pooled\" analysis), adjusting for time as a categorical variable, and a Bayesian hierarchical model implementation which adjusts for time trends using smoothing techniques (the \"Bayesian time machine\"). We compare type I error rates and relative efficiency of each method in simulation settings based on observed ACTT remdesivir arm data.</p><p><strong>Results: </strong>The unadjusted-pooled approach provided substantially different estimates of the effect of interferon beta-1a relative to remdesivir compared with the concurrent-only and model-based approaches, indicating that changes in recovery and death rates over time were not ignorable across different stages of ACTT. The model-based approaches rely on an assumption of constant treatment effects for each arm in the platform relative to control; error rates more than doubled in settings where this was not satisfied. Relative efficiency of the model-based approaches compared with the concurrent-only analysis was moderate.</p><p><strong>Conclusions: </strong>In simulation settings where key model assumptions were not met, potential efficiency gains from incorporation of nonconcurrent controls were outweighed by the risk of substantial type I error rate inflation. This leads us to advise against these strategies for primary analyses in confirmatory clinical trials, aligning with current FDA guidance advising against comparisons to nonconcurrent controls in COVID-19 settings. The model-based adjustment methods may be useful in other settings, but we recommend performing the concurrent-only analysis as a reference for assessing the degree to which nonconcurrent controls drive results.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"17407745251313928"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745251313928","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Platform trials typically feature a shared control arm and multiple experimental treatment arms. Staggered entry and exit of arms splits the control group into two cohorts: those randomized during the same period in which the experimental arm was open (concurrent controls) and those randomized outside that period (nonconcurrent controls). Combining these control groups may offer increased statistical power but can lead to bias if analyses do not account for time trends in the response variable. Proposed methods of adjustment for time may increase type I error rates when time trends impact arms unequally or when large, sudden changes to the response rate occur. However, there has been limited exploration of the degree of type I error inflation one can plausibly expect in real-world scenarios.

Methods: We use data from the Adaptive COVID-19 Treatment Trial (ACTT) to mimic a realistic platform trial with a remdesivir control arm. We compare four strategies for estimating the effect of interferon beta-1a (the ACTT-3 experimental arm) relative to remdesivir (data from ACTT-1, ACTT-2, and ACTT-3) on recovery and death by day 29: utilizing concurrent controls only (the prespecified analysis), pooling all remdesivir arm data without adjustment (the "unadjusted-pooled" analysis), adjusting for time as a categorical variable, and a Bayesian hierarchical model implementation which adjusts for time trends using smoothing techniques (the "Bayesian time machine"). We compare type I error rates and relative efficiency of each method in simulation settings based on observed ACTT remdesivir arm data.

Results: The unadjusted-pooled approach provided substantially different estimates of the effect of interferon beta-1a relative to remdesivir compared with the concurrent-only and model-based approaches, indicating that changes in recovery and death rates over time were not ignorable across different stages of ACTT. The model-based approaches rely on an assumption of constant treatment effects for each arm in the platform relative to control; error rates more than doubled in settings where this was not satisfied. Relative efficiency of the model-based approaches compared with the concurrent-only analysis was moderate.

Conclusions: In simulation settings where key model assumptions were not met, potential efficiency gains from incorporation of nonconcurrent controls were outweighed by the risk of substantial type I error rate inflation. This leads us to advise against these strategies for primary analyses in confirmatory clinical trials, aligning with current FDA guidance advising against comparisons to nonconcurrent controls in COVID-19 settings. The model-based adjustment methods may be useful in other settings, but we recommend performing the concurrent-only analysis as a reference for assessing the degree to which nonconcurrent controls drive results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Trials
Clinical Trials 医学-医学:研究与实验
CiteScore
4.10
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.
期刊最新文献
Evaluating the use of text-message reminders and personalised text-message reminders on the return of participant questionnaires in trials, a systematic review and meta-analysis. Impact of differences between interim and post-interim analysis populations on outcomes of a group sequential trial: Example of the MOVe-OUT study. From RAGs to riches: Utilizing large language models to write documents for clinical trials. Hybrid sample size calculations for cluster randomised trials using assurance. Characterization of studies considered and required under Medicare's coverage with evidence development program.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1