Hybrid sample size calculations for cluster randomised trials using assurance.

IF 2.2 3区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Clinical Trials Pub Date : 2025-02-11 DOI:10.1177/17407745241312635
S Faye Williamson, Svetlana V Tishkovskaya, Kevin J Wilson
{"title":"Hybrid sample size calculations for cluster randomised trials using assurance.","authors":"S Faye Williamson, Svetlana V Tishkovskaya, Kevin J Wilson","doi":"10.1177/17407745241312635","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Sample size determination for cluster randomised trials is challenging because it requires robust estimation of the intra-cluster correlation coefficient. Typically, the sample size is chosen to provide a certain level of power to reject the null hypothesis in a two-sample hypothesis test. This relies on the minimal clinically important difference and estimates for the overall standard deviation, the intra-cluster correlation coefficient and, if cluster sizes are assumed to be unequal, the coefficient of variation of the cluster size. Varying any of these parameters can have a strong effect on the required sample size. In particular, it is very sensitive to small differences in the intra-cluster correlation coefficient. A relevant intra-cluster correlation coefficient estimate is often not available, or the available estimate is imprecise due to being based on studies with low numbers of clusters. If the intra-cluster correlation coefficient value used in the power calculation is far from the unknown true value, this could lead to trials which are substantially over- or under-powered.</p><p><strong>Methods: </strong>In this article, we propose a hybrid approach using Bayesian assurance to determine the sample size for a cluster randomised trial in combination with a frequentist analysis. Assurance is an alternative to traditional power, which incorporates the uncertainty on key parameters through a prior distribution. We suggest specifying prior distributions for the overall standard deviation, intra-cluster correlation coefficient and coefficient of variation of the cluster size, while still utilising the minimal clinically important difference. We illustrate the approach through the design of a cluster randomised trial in post-stroke incontinence and compare the results to those obtained from a standard power calculation.</p><p><strong>Results: </strong>We show that assurance can be used to calculate a sample size based on an elicited prior distribution for the intra-cluster correlation coefficient, whereas a power calculation discards all of the information in the prior except for a single point estimate. Results show that this approach can avoid misspecifying sample sizes when the prior medians for the intra-cluster correlation coefficient are very similar, but the underlying prior distributions exhibit quite different behaviour. Incorporating uncertainty on all three of the nuisance parameters, rather than only on the intra-cluster correlation coefficient, does not notably increase the required sample size.</p><p><strong>Conclusion: </strong>Assurance provides a better understanding of the probability of success of a trial given a particular minimal clinically important difference and can be used instead of power to produce sample sizes that are more robust to parameter uncertainty. This is especially useful when there is difficulty obtaining reliable parameter estimates.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":" ","pages":"17407745241312635"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745241312635","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aims: Sample size determination for cluster randomised trials is challenging because it requires robust estimation of the intra-cluster correlation coefficient. Typically, the sample size is chosen to provide a certain level of power to reject the null hypothesis in a two-sample hypothesis test. This relies on the minimal clinically important difference and estimates for the overall standard deviation, the intra-cluster correlation coefficient and, if cluster sizes are assumed to be unequal, the coefficient of variation of the cluster size. Varying any of these parameters can have a strong effect on the required sample size. In particular, it is very sensitive to small differences in the intra-cluster correlation coefficient. A relevant intra-cluster correlation coefficient estimate is often not available, or the available estimate is imprecise due to being based on studies with low numbers of clusters. If the intra-cluster correlation coefficient value used in the power calculation is far from the unknown true value, this could lead to trials which are substantially over- or under-powered.

Methods: In this article, we propose a hybrid approach using Bayesian assurance to determine the sample size for a cluster randomised trial in combination with a frequentist analysis. Assurance is an alternative to traditional power, which incorporates the uncertainty on key parameters through a prior distribution. We suggest specifying prior distributions for the overall standard deviation, intra-cluster correlation coefficient and coefficient of variation of the cluster size, while still utilising the minimal clinically important difference. We illustrate the approach through the design of a cluster randomised trial in post-stroke incontinence and compare the results to those obtained from a standard power calculation.

Results: We show that assurance can be used to calculate a sample size based on an elicited prior distribution for the intra-cluster correlation coefficient, whereas a power calculation discards all of the information in the prior except for a single point estimate. Results show that this approach can avoid misspecifying sample sizes when the prior medians for the intra-cluster correlation coefficient are very similar, but the underlying prior distributions exhibit quite different behaviour. Incorporating uncertainty on all three of the nuisance parameters, rather than only on the intra-cluster correlation coefficient, does not notably increase the required sample size.

Conclusion: Assurance provides a better understanding of the probability of success of a trial given a particular minimal clinically important difference and can be used instead of power to produce sample sizes that are more robust to parameter uncertainty. This is especially useful when there is difficulty obtaining reliable parameter estimates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Trials
Clinical Trials 医学-医学:研究与实验
CiteScore
4.10
自引率
3.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.
期刊最新文献
Hybrid sample size calculations for cluster randomised trials using assurance. Characterization of studies considered and required under Medicare's coverage with evidence development program. Examining the bias-efficiency tradeoff from incorporation of nonconcurrent controls in platform trials: A simulation study example from the adaptive COVID-19 treatment trial. Scaling and interpreting treatment effects in clinical trials using restricted mean survival time. Optimizing accrual to a large-scale, clinically integrated randomized trial in anesthesiology: A 2-year analysis of recruitment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1