Identification and functional characterization of ammonium transporters in Penicilliumpurpurogenum.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of bioscience and bioengineering Pub Date : 2025-02-07 DOI:10.1016/j.jbiosc.2025.01.005
Ryo Kojima, Taisuke Watanabe, Takafumi Kasumi, Hiroshi Mitsuzawa
{"title":"Identification and functional characterization of ammonium transporters in Penicilliumpurpurogenum.","authors":"Ryo Kojima, Taisuke Watanabe, Takafumi Kasumi, Hiroshi Mitsuzawa","doi":"10.1016/j.jbiosc.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>The filamentous fungus Penicillium purpurogenum IAM15392 produces a nitrogen-containing azaphilone pigment, (10Z)-12-carboxyl-monascorubramine (PP-V), which is a potentially valuable natural food colorant. Because ammonium is used as a nitrogen source, and because ammonium uptake is the first step in the synthesis of PP-V, ammonium transporters of P. purpurogenum were identified and characterized. The P. purpurogenum genome was found to contain four putative ammonium transporter genes, designated amtA, amtB, amtC, and amtD, which encode 11 transmembrane proteins of 479, 567, 452, and 475 amino acid residues, respectively. These genes were tested for their ability to complement mutations in the ammonium transporter genes of the fission yeast Schizosaccharomyces pombe. The phenotypes of mutants included defects in growth on low ammonium medium, methylammonium sensitivity, ammonium uptake from the culture medium, and ammonium limitation-induced invasive growth. Furthermore, the transcription of the amt genes was examined in P. purpurogenum grown under different ammonium concentrations. The results suggest that AmtB plays a major role in growth using ammonium as a nitrogen source, whereas AmtA and possibly AmtD function at low ammonium concentrations. Because a medium used for the production of PP-V contains a high concentration of ammonium, our functional characterization of the P. purpurogenum ammonium transporters suggests that AmtB is a potential target of bioengineering for increased PP-V production.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2025.01.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The filamentous fungus Penicillium purpurogenum IAM15392 produces a nitrogen-containing azaphilone pigment, (10Z)-12-carboxyl-monascorubramine (PP-V), which is a potentially valuable natural food colorant. Because ammonium is used as a nitrogen source, and because ammonium uptake is the first step in the synthesis of PP-V, ammonium transporters of P. purpurogenum were identified and characterized. The P. purpurogenum genome was found to contain four putative ammonium transporter genes, designated amtA, amtB, amtC, and amtD, which encode 11 transmembrane proteins of 479, 567, 452, and 475 amino acid residues, respectively. These genes were tested for their ability to complement mutations in the ammonium transporter genes of the fission yeast Schizosaccharomyces pombe. The phenotypes of mutants included defects in growth on low ammonium medium, methylammonium sensitivity, ammonium uptake from the culture medium, and ammonium limitation-induced invasive growth. Furthermore, the transcription of the amt genes was examined in P. purpurogenum grown under different ammonium concentrations. The results suggest that AmtB plays a major role in growth using ammonium as a nitrogen source, whereas AmtA and possibly AmtD function at low ammonium concentrations. Because a medium used for the production of PP-V contains a high concentration of ammonium, our functional characterization of the P. purpurogenum ammonium transporters suggests that AmtB is a potential target of bioengineering for increased PP-V production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
期刊最新文献
Application of deep learning for evaluation of the growth rate of Daphnia magna. Importance of dataset design in developing robust U-Net models for label-free cell morphology evaluation. Identification and functional characterization of ammonium transporters in Penicilliumpurpurogenum. Metabolic profiling reveals distinctive ripening dynamics in ethylene-treated Musa balbisiana cv. 'Pisang Klutuk Wulung' compared to commercial Cavendish banana. New glycerol glycosides in sake formed by Aspergillus oryzae α-glucosidase A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1