Impaired cognitive function and decreased monoamine neurotransmitters in the DNAJC12 gene knockout mouse model.

IF 3.4 2区 医学 Q2 GENETICS & HEREDITY Orphanet Journal of Rare Diseases Pub Date : 2025-02-08 DOI:10.1186/s13023-025-03580-z
Shunan Wang, Ming Shen, Bo Pang, Bo Zhou, Yuan Yuan, Mei Lu, Xiangling Deng, Min Yang, Shufang Liu, Qiong Wang, Mei Xue, Qisheng Xia, Zhixin Zhang
{"title":"Impaired cognitive function and decreased monoamine neurotransmitters in the DNAJC12 gene knockout mouse model.","authors":"Shunan Wang, Ming Shen, Bo Pang, Bo Zhou, Yuan Yuan, Mei Lu, Xiangling Deng, Min Yang, Shufang Liu, Qiong Wang, Mei Xue, Qisheng Xia, Zhixin Zhang","doi":"10.1186/s13023-025-03580-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hyperphenylalaninemia, a prevalent amino acid metabolism disorder, often results in cognitive impairment. Recent studies have identified a rare variant of this disorder caused by mutations in the DNAJC12 gene. The specific mechanisms by which DNAJC12 mutations lead to hyperphenylalaninemia and the lack of an animal model for study remain significant gaps in understanding.</p><p><strong>Purpose: </strong>This study aims to elucidate the role of DNAJC12 in intellectual disability and explore the mechanisms by which DNAJC12 deficiency leads to hyperphenylalaninemia through developing a DNAJC12 gene knockout mouse model.</p><p><strong>Methods: </strong>We thoroughly examined the clinical features and genetic mutations evident in two patients with biallelic mutations in the DNAJC12 gene. Based on the patient's mutation locations, we determined the target site for the knockout utilizing CRISPR/Cas9 technology. To assess the impact of these mutations on DNAJC12 expression, we used quantitative real-time PCR and Western blotting techniques to measure mRNA and protein levels, respectively. The Morris water maze test was administered to evaluate the cognitive functions of the mice. Additionally, we utilized High-Performance Liquid Chromatography (HPLC) to measure serum aromatic amino acids and brain monoamines, facilitating an investigation into the metabolism of phenylalanine and tyrosine.</p><p><strong>Results: </strong>We reported two patients with mutations in the DNAJC12 gene. Case 1 carried the mutations c.158-1G > A and c.262 C > T in the DNAJC12 gene. He presented with nocturnal eye closure, crying, and arching back in reverse tension before treatment, suggesting a neurotransmitter metabolism disorder. Case 2 carried the mutations c.473 C > G, and c.102 deletion in the DNAJC12 gene. He showed elevated blood phenylalanine levels, although further clinical details were not available. Based on the patients' mutation locations, exons 2-4 of the DNAJC12 gene were targeted and eliminated. In our animal model experiments, DNAJC12 gene knockout mice exhibited a complete absence of DNAJC12 expression at both mRNA and protein levels. These knockout mice showed significant deficits in learning and memory performance as assessed by the Morris water maze test. Quantitative real-time PCR analysis indicated no significant differences in the levels of aromatic amino hydroxylases between knockout and wild-type mice. However, Western blot analysis revealed a substantial reduction in phenylalanine hydroxylase (PAH) protein levels in the liver of knockout mice, while tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2) expression remained unchanged. HPLC analysis demonstrated increased serum Phe concentrations and decreased levels of brain neurotransmitters in the knockout group.</p><p><strong>Conclusions: </strong>We report two patients with four novel DNAJC12 mutations (c.158-1G > A, c.262 C > T, c.473 C > G, c.102delT), expanding the mutation spectrum. Based on the patients' mutation location, we established the first DNAJC12 gene knockout mouse model. The knockout mice exhibit hyperphenylalaninemia, impaired cognitive function, and decreased monoamine neurotransmitters. DNAJC12 deficiency may contribute to the clinical phenotype via the PAH pathway, potentially at the post-transcriptional level.</p>","PeriodicalId":19651,"journal":{"name":"Orphanet Journal of Rare Diseases","volume":"20 1","pages":"60"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orphanet Journal of Rare Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13023-025-03580-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hyperphenylalaninemia, a prevalent amino acid metabolism disorder, often results in cognitive impairment. Recent studies have identified a rare variant of this disorder caused by mutations in the DNAJC12 gene. The specific mechanisms by which DNAJC12 mutations lead to hyperphenylalaninemia and the lack of an animal model for study remain significant gaps in understanding.

Purpose: This study aims to elucidate the role of DNAJC12 in intellectual disability and explore the mechanisms by which DNAJC12 deficiency leads to hyperphenylalaninemia through developing a DNAJC12 gene knockout mouse model.

Methods: We thoroughly examined the clinical features and genetic mutations evident in two patients with biallelic mutations in the DNAJC12 gene. Based on the patient's mutation locations, we determined the target site for the knockout utilizing CRISPR/Cas9 technology. To assess the impact of these mutations on DNAJC12 expression, we used quantitative real-time PCR and Western blotting techniques to measure mRNA and protein levels, respectively. The Morris water maze test was administered to evaluate the cognitive functions of the mice. Additionally, we utilized High-Performance Liquid Chromatography (HPLC) to measure serum aromatic amino acids and brain monoamines, facilitating an investigation into the metabolism of phenylalanine and tyrosine.

Results: We reported two patients with mutations in the DNAJC12 gene. Case 1 carried the mutations c.158-1G > A and c.262 C > T in the DNAJC12 gene. He presented with nocturnal eye closure, crying, and arching back in reverse tension before treatment, suggesting a neurotransmitter metabolism disorder. Case 2 carried the mutations c.473 C > G, and c.102 deletion in the DNAJC12 gene. He showed elevated blood phenylalanine levels, although further clinical details were not available. Based on the patients' mutation locations, exons 2-4 of the DNAJC12 gene were targeted and eliminated. In our animal model experiments, DNAJC12 gene knockout mice exhibited a complete absence of DNAJC12 expression at both mRNA and protein levels. These knockout mice showed significant deficits in learning and memory performance as assessed by the Morris water maze test. Quantitative real-time PCR analysis indicated no significant differences in the levels of aromatic amino hydroxylases between knockout and wild-type mice. However, Western blot analysis revealed a substantial reduction in phenylalanine hydroxylase (PAH) protein levels in the liver of knockout mice, while tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2) expression remained unchanged. HPLC analysis demonstrated increased serum Phe concentrations and decreased levels of brain neurotransmitters in the knockout group.

Conclusions: We report two patients with four novel DNAJC12 mutations (c.158-1G > A, c.262 C > T, c.473 C > G, c.102delT), expanding the mutation spectrum. Based on the patients' mutation location, we established the first DNAJC12 gene knockout mouse model. The knockout mice exhibit hyperphenylalaninemia, impaired cognitive function, and decreased monoamine neurotransmitters. DNAJC12 deficiency may contribute to the clinical phenotype via the PAH pathway, potentially at the post-transcriptional level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Orphanet Journal of Rare Diseases
Orphanet Journal of Rare Diseases 医学-医学:研究与实验
CiteScore
6.30
自引率
8.10%
发文量
418
审稿时长
4-8 weeks
期刊介绍: Orphanet Journal of Rare Diseases is an open access, peer-reviewed journal that encompasses all aspects of rare diseases and orphan drugs. The journal publishes high-quality reviews on specific rare diseases. In addition, the journal may consider articles on clinical trial outcome reports, either positive or negative, and articles on public health issues in the field of rare diseases and orphan drugs. The journal does not accept case reports.
期刊最新文献
Clinical spectrum, treatment and outcomes of the m.10197G>A mutation in MT-ND3: a case report, systematic review and meta-analysis. Generalized pustular psoriasis: a multicentric study on patient characteristics and clinical burden. Impaired cognitive function and decreased monoamine neurotransmitters in the DNAJC12 gene knockout mouse model. Genomic analysis of the SMN1 gene region in patients with clinically diagnosed spinal muscular atrophy: a retrospective observational study. The distribution and spectrum of thalassemia variants in GUIYANG region, southern China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1