The Role of Gut Microbiota and Bacterial Translocation in the Pathogenesis and Management of Type 2 Diabetes Mellitus: Mechanisms, Impacts, and Dietary Therapeutic Strategies.
{"title":"The Role of Gut Microbiota and Bacterial Translocation in the Pathogenesis and Management of Type 2 Diabetes Mellitus: Mechanisms, Impacts, and Dietary Therapeutic Strategies.","authors":"Ria Murugesan, Janardanan Kumar, Kakithakara Vajravelu Leela, Sachdev Meenakshi, Appandraj Srivijayan, Shubhashree Thiruselvam, Abhishek Satheesan, Venkata Chaithanya","doi":"10.1016/j.physbeh.2025.114838","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The influence of gut microbiota on Type 2 Diabetes Mellitus (T2DM) is an emerging area of research. This review investigates the relationship between gut microbiota dysbiosis, bacterial translocation, and T2DM. It aims to elucidate how microbial imbalances contribute to the progression of T2DM through bacterial translocation and to evaluate dietary and therapeutic strategies to manage these effects.</p><p><strong>Recent findings: </strong>Recent studies highlight that dysbiosis in T2DM patients often leads to increased systemic inflammation, impaired glucose metabolism, and disrupted gut barrier integrity. These disruptions promote elevated levels of harmful bacterial components, such as lipopolysaccharides, in the bloodstream. This, in turn, is linked to worsening insulin resistance and metabolic dysfunction. Advances in molecular methods and biomarkers have provided deeper insights into bacterial translocation and its impact on diabetes. Dietary interventions, including nutraceutical agents, high-fiber and low-glycemic index diets, as well as the use of probiotics and prebiotics, have shown promise in restoring gut health and mitigating bacterial translocation.</p><p><strong>Conclusion: </strong>Maintaining a balanced gut microbiota and intestinal barrier integrity is crucial for managing T2DM. Therapeutic strategies, including dietary modifications and nutraceuticals, have demonstrated potential in reducing bacterial translocation and systemic inflammation. Continued research is needed to refine these approaches and explore novel treatment modalities for improving metabolic health in T2DM patients.</p>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":" ","pages":"114838"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.physbeh.2025.114838","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose of review: The influence of gut microbiota on Type 2 Diabetes Mellitus (T2DM) is an emerging area of research. This review investigates the relationship between gut microbiota dysbiosis, bacterial translocation, and T2DM. It aims to elucidate how microbial imbalances contribute to the progression of T2DM through bacterial translocation and to evaluate dietary and therapeutic strategies to manage these effects.
Recent findings: Recent studies highlight that dysbiosis in T2DM patients often leads to increased systemic inflammation, impaired glucose metabolism, and disrupted gut barrier integrity. These disruptions promote elevated levels of harmful bacterial components, such as lipopolysaccharides, in the bloodstream. This, in turn, is linked to worsening insulin resistance and metabolic dysfunction. Advances in molecular methods and biomarkers have provided deeper insights into bacterial translocation and its impact on diabetes. Dietary interventions, including nutraceutical agents, high-fiber and low-glycemic index diets, as well as the use of probiotics and prebiotics, have shown promise in restoring gut health and mitigating bacterial translocation.
Conclusion: Maintaining a balanced gut microbiota and intestinal barrier integrity is crucial for managing T2DM. Therapeutic strategies, including dietary modifications and nutraceuticals, have demonstrated potential in reducing bacterial translocation and systemic inflammation. Continued research is needed to refine these approaches and explore novel treatment modalities for improving metabolic health in T2DM patients.
期刊介绍:
Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.