Agata Binienda, Weronika Machelak, Marta Zielińska, Jakub Fichna
{"title":"Free fatty acid receptors type 2 and 4 mediate the anticancer effects of fatty acids in colorectal cancer - in vitro and in vivo studies","authors":"Agata Binienda, Weronika Machelak, Marta Zielińska, Jakub Fichna","doi":"10.1016/j.bbadis.2025.167708","DOIUrl":null,"url":null,"abstract":"<div><div>High incidence of colorectal cancer (CRC) is influenced by diet low in fiber (source of short chain fatty acids, SCFAs, natural agonists for free fatty acid receptor type 2 (FFAR2)) and high in fat (main source of long chain fatty acids, LCFAs, FFAR4 agonists). FFAR2 and FFAR4 are downregulated in CRC. In this study, we characterized whether the anticancer effects of SCFAs and LCFAs are FFAR-dependent in <em>in vitro</em> and <em>in vivo</em> models of CRC. <em>In vitro</em>, SW-480 cell growth was determined after incubation with FFARs ligands (SCFAs: acetate, butyrate; LCFAs: palmitate, stearate) using MTT assay. Cell migration and invasion were investigated by wound healing and transwell-based invasion assays. <em>In vivo</em>, SCFAs and LCFAs were administered to azoxymethane/dextran sodium sulfate-treated mice. Real-time qPCR and Western blot were used to determine FFARs expression. SCFAs and LCFAs significantly decreased SW-480 cell growth, migration and invasion capacities. Combination of SCFAs and LCFAs induced synergistic inhibitory effects on CRC cell growth and motility. <em>FFAR2</em> and <em>FFAR4</em> expression were elevated in CRC cells treated with butyrate as well as with butyrate+acetate, and butyrate+palmitate+stearate. Concurrently, only FFAR4 expression was increased in CRC cells incubated with LCFAs. <em>In vivo</em>, treatment with LCFAs, but not SCFAs increased <em>ffar2</em> and Ffar4 expression. Our findings showed that SCFAs and LCFAs inhibit cancer cell growth and their migration and invasion capabilities. Our study evidenced that the anticancer effects of SCFAs- and LCFAs are mediated by FFAR2 and FFAR4.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 4","pages":"Article 167708"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000535","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High incidence of colorectal cancer (CRC) is influenced by diet low in fiber (source of short chain fatty acids, SCFAs, natural agonists for free fatty acid receptor type 2 (FFAR2)) and high in fat (main source of long chain fatty acids, LCFAs, FFAR4 agonists). FFAR2 and FFAR4 are downregulated in CRC. In this study, we characterized whether the anticancer effects of SCFAs and LCFAs are FFAR-dependent in in vitro and in vivo models of CRC. In vitro, SW-480 cell growth was determined after incubation with FFARs ligands (SCFAs: acetate, butyrate; LCFAs: palmitate, stearate) using MTT assay. Cell migration and invasion were investigated by wound healing and transwell-based invasion assays. In vivo, SCFAs and LCFAs were administered to azoxymethane/dextran sodium sulfate-treated mice. Real-time qPCR and Western blot were used to determine FFARs expression. SCFAs and LCFAs significantly decreased SW-480 cell growth, migration and invasion capacities. Combination of SCFAs and LCFAs induced synergistic inhibitory effects on CRC cell growth and motility. FFAR2 and FFAR4 expression were elevated in CRC cells treated with butyrate as well as with butyrate+acetate, and butyrate+palmitate+stearate. Concurrently, only FFAR4 expression was increased in CRC cells incubated with LCFAs. In vivo, treatment with LCFAs, but not SCFAs increased ffar2 and Ffar4 expression. Our findings showed that SCFAs and LCFAs inhibit cancer cell growth and their migration and invasion capabilities. Our study evidenced that the anticancer effects of SCFAs- and LCFAs are mediated by FFAR2 and FFAR4.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.