Ncl liquid-liquid phase separation and SUMOylation mediate the stabilization of HIF-1α expression and promote pyroptosis in ischemic hindlimb

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular basis of disease Pub Date : 2025-02-10 DOI:10.1016/j.bbadis.2025.167706
Yanli Wang , Weiliang Wu , Yan Xu , Chengjie Wu , Qingfang Han , Tonggan Lu , Huiling Zhang , Lijuan Jiao , Yu Zhang , Bin Liu , Xi-yong Yu , Yangxin Li
{"title":"Ncl liquid-liquid phase separation and SUMOylation mediate the stabilization of HIF-1α expression and promote pyroptosis in ischemic hindlimb","authors":"Yanli Wang ,&nbsp;Weiliang Wu ,&nbsp;Yan Xu ,&nbsp;Chengjie Wu ,&nbsp;Qingfang Han ,&nbsp;Tonggan Lu ,&nbsp;Huiling Zhang ,&nbsp;Lijuan Jiao ,&nbsp;Yu Zhang ,&nbsp;Bin Liu ,&nbsp;Xi-yong Yu ,&nbsp;Yangxin Li","doi":"10.1016/j.bbadis.2025.167706","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid-liquid phase separation (LLPS) has emerged as a flexible intracellular compartment that modulates various pathological processes. Hypoxia-inducible factor-1α (HIF-1α) has been shown to play an essential role in inflammation after ischemic injury. However, the mechanisms underlying HIF-1α-induced inflammation in ischemic diseases have not been defined. This study found that HIF-1α mediated the progression of ischemia-induced muscle injury. After ischemic injury, SUMO1 is upregulated and rapidly activates NLRP3 inflammasome through the upregulation of HIF-1α, leading to enhanced inflammation and pyroptosis. Co-IP revealed an interaction between SUMO1 and HIF-1α and SUMOylation of HIF-1α at K477. Moreover, we demonstrated the important role of dynamic phase separation of Nucleolin (Ncl) in regulating HIF-1α mRNA stability through fluorescence recovery after photobleach (FRAP) analysis. The stability of HIF-1α is regulated by Ncl liquid-liquid phase separation and SUMOylation in ischemia-induced hindlimb injury. HIF-1α can promote the expression of NLRP3 and other inflammation-related molecules, leading to pyroptosis, suggesting that Ncl/LLPS/HIF-1α or SUMO1/HIF-1α pathway may be a new target for the treatment of inflammation in ischemic diseases. Although previous studies have found that HIF-1α is able to promote the expression of target genes after hypoxia, and these genes are used to maintain the stability of the intracellular environment to adapt to hypoxia. We found that HIF-1α is involved in the activation process of NLRP3 inflammasomes after hind limb ischemia, which enriches our understanding of the biological role of HIF-1α.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 4","pages":"Article 167706"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000511","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid-liquid phase separation (LLPS) has emerged as a flexible intracellular compartment that modulates various pathological processes. Hypoxia-inducible factor-1α (HIF-1α) has been shown to play an essential role in inflammation after ischemic injury. However, the mechanisms underlying HIF-1α-induced inflammation in ischemic diseases have not been defined. This study found that HIF-1α mediated the progression of ischemia-induced muscle injury. After ischemic injury, SUMO1 is upregulated and rapidly activates NLRP3 inflammasome through the upregulation of HIF-1α, leading to enhanced inflammation and pyroptosis. Co-IP revealed an interaction between SUMO1 and HIF-1α and SUMOylation of HIF-1α at K477. Moreover, we demonstrated the important role of dynamic phase separation of Nucleolin (Ncl) in regulating HIF-1α mRNA stability through fluorescence recovery after photobleach (FRAP) analysis. The stability of HIF-1α is regulated by Ncl liquid-liquid phase separation and SUMOylation in ischemia-induced hindlimb injury. HIF-1α can promote the expression of NLRP3 and other inflammation-related molecules, leading to pyroptosis, suggesting that Ncl/LLPS/HIF-1α or SUMO1/HIF-1α pathway may be a new target for the treatment of inflammation in ischemic diseases. Although previous studies have found that HIF-1α is able to promote the expression of target genes after hypoxia, and these genes are used to maintain the stability of the intracellular environment to adapt to hypoxia. We found that HIF-1α is involved in the activation process of NLRP3 inflammasomes after hind limb ischemia, which enriches our understanding of the biological role of HIF-1α.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
期刊最新文献
Matrisome analysis of NSCLC unveils clinically-important cancer-associated extracellular matrix changes Ncl liquid-liquid phase separation and SUMOylation mediate the stabilization of HIF-1α expression and promote pyroptosis in ischemic hindlimb RGS1 can serve as a long-term prognostic marker in gastric cancer by promoting the infiltration and polarization of macrophages Pinocembrin reduces pyroptosis to improve flap survival by modulating the TLR4/NF-κB/NLRP3 signaling pathway Free fatty acid receptors type 2 and 4 mediate the anticancer effects of fatty acids in colorectal cancer - in vitro and in vivo studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1