{"title":"Understanding and Mitigating Gender Bias in Information Retrieval Systems","authors":"Shirin Seyedsalehi, Amin Bigdeli, Negar Arabzadeh, Batool AlMousawi, Zack Marshall, Morteza Zihayat, Ebrahim Bagheri","doi":"10.1561/1500000103","DOIUrl":null,"url":null,"abstract":"<p>\nGender bias is a pervasive issue that continues to influence various aspects of society, including the outcomes of information retrieval (IR) systems. As these systems become increasingly integral to accessing and navigating the vast amounts of information available today, the need to understand and mitigate gender bias within them is paramount. This monograph provides a comprehensive examination of the origins, manifestations, and consequences of gender bias in IR systems, as well as the current methodologies employed to address these biases. <p>Theoretical frameworks surrounding gender and its representation in artificial intelligence (AI) systems are explored, particularly focusing on how traditional gender binaries are perpetuated and reinforced through data and algorithmic processes. Metrics and methodologies used to identify and measure gender bias within IR systems are then analyzed, offering a detailed evaluation of existing approaches and their limitations. </p><p>Subsequent sections address the sources of gender bias, including biased input queries, retrieval methods, and gold standard datasets. Various data-driven and method-level debiasing strategies are presented, including techniques for debiasing neural embeddings and algorithmic approaches aimed at reducing bias in IR system outputs. The monograph concludes with a discussion of the challenges and limitations faced by current debiasing efforts and provides insights into future research directions that could lead to more equitable and inclusive IR systems.\n</p><p>This monograph serves as a valuable resource for researchers, practitioners, and students in the fields of information retrieval, artificial intelligence, and data science, providing the knowledge and tools needed to address gender bias and contribute to the development of fair and unbiased information systems.\n</p></p>","PeriodicalId":48829,"journal":{"name":"Foundations and Trends in Information Retrieval","volume":"143 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Information Retrieval","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1561/1500000103","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Gender bias is a pervasive issue that continues to influence various aspects of society, including the outcomes of information retrieval (IR) systems. As these systems become increasingly integral to accessing and navigating the vast amounts of information available today, the need to understand and mitigate gender bias within them is paramount. This monograph provides a comprehensive examination of the origins, manifestations, and consequences of gender bias in IR systems, as well as the current methodologies employed to address these biases.
Theoretical frameworks surrounding gender and its representation in artificial intelligence (AI) systems are explored, particularly focusing on how traditional gender binaries are perpetuated and reinforced through data and algorithmic processes. Metrics and methodologies used to identify and measure gender bias within IR systems are then analyzed, offering a detailed evaluation of existing approaches and their limitations.
Subsequent sections address the sources of gender bias, including biased input queries, retrieval methods, and gold standard datasets. Various data-driven and method-level debiasing strategies are presented, including techniques for debiasing neural embeddings and algorithmic approaches aimed at reducing bias in IR system outputs. The monograph concludes with a discussion of the challenges and limitations faced by current debiasing efforts and provides insights into future research directions that could lead to more equitable and inclusive IR systems.
This monograph serves as a valuable resource for researchers, practitioners, and students in the fields of information retrieval, artificial intelligence, and data science, providing the knowledge and tools needed to address gender bias and contribute to the development of fair and unbiased information systems.
期刊介绍:
The surge in research across all domains in the past decade has resulted in a plethora of new publications, causing an exponential growth in published research. Navigating through this extensive literature and staying current has become a time-consuming challenge. While electronic publishing provides instant access to more articles than ever, discerning the essential ones for a comprehensive understanding of any topic remains an issue. To tackle this, Foundations and Trends® in Information Retrieval - FnTIR - addresses the problem by publishing high-quality survey and tutorial monographs in the field.
Each issue of Foundations and Trends® in Information Retrieval - FnT IR features a 50-100 page monograph authored by research leaders, covering tutorial subjects, research retrospectives, and survey papers that provide state-of-the-art reviews within the scope of the journal.