Desi Chen, Guwen Chen, Long Lv, Jiajun Dong, Yuchen Shang, Xuyuan Hou, Yan Wang, Jianqi Shang, Saisai Wang, Yankun Yin, Ran Liu, Wei Zhang, Zhou Jiang, Yan He, Bingchen He, Chengwen Mao, Shengcai Zhu, Bertil Sundqvist, Bingbing Liu, Mingguang Yao
{"title":"General approach for synthesizing hexagonal diamond by heating post-graphite phases","authors":"Desi Chen, Guwen Chen, Long Lv, Jiajun Dong, Yuchen Shang, Xuyuan Hou, Yan Wang, Jianqi Shang, Saisai Wang, Yankun Yin, Ran Liu, Wei Zhang, Zhou Jiang, Yan He, Bingchen He, Chengwen Mao, Shengcai Zhu, Bertil Sundqvist, Bingbing Liu, Mingguang Yao","doi":"10.1038/s41563-025-02126-9","DOIUrl":null,"url":null,"abstract":"<p>Natural and synthetic diamonds mostly have a cubic lattice, whereas a rare hexagonal structure—known as hexagonal diamond (HD)—has been largely unexplored due to the low purity and minuscule size of most samples obtained. The synthesis of HD remains a challenge and even its existence remains controversial. Here we report the synthesis of well-crystallized, nearly pure HD by heating highly compressed graphite, which is applicable to both bulk and nanosized graphitic precursors. Experiments and theoretical analyses show that the formation of a post-graphite phase within compressed graphite and temperature gradients promote HD growth. Using this approach, a millimetre-sized, highly oriented HD block comprising stacked single-crystal-like HD nanolayers is obtained. This HD exhibits high thermal stability up to 1,100 °C and a very high hardness of 155 GPa. Our findings offer valuable insights regarding the graphite-to-diamond conversion under elevated pressure and temperature, providing opportunities for the fabrication and applications of this unique material.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"12 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02126-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural and synthetic diamonds mostly have a cubic lattice, whereas a rare hexagonal structure—known as hexagonal diamond (HD)—has been largely unexplored due to the low purity and minuscule size of most samples obtained. The synthesis of HD remains a challenge and even its existence remains controversial. Here we report the synthesis of well-crystallized, nearly pure HD by heating highly compressed graphite, which is applicable to both bulk and nanosized graphitic precursors. Experiments and theoretical analyses show that the formation of a post-graphite phase within compressed graphite and temperature gradients promote HD growth. Using this approach, a millimetre-sized, highly oriented HD block comprising stacked single-crystal-like HD nanolayers is obtained. This HD exhibits high thermal stability up to 1,100 °C and a very high hardness of 155 GPa. Our findings offer valuable insights regarding the graphite-to-diamond conversion under elevated pressure and temperature, providing opportunities for the fabrication and applications of this unique material.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.