Frontier molecular orbital weighted model based networks for revealing organic delayed fluorescence efficiency

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-02-10 DOI:10.1038/s41377-024-01713-w
Zhaoming He, Hai Bi, Baoyan Liang, Zhiqiang Li, Heming Zhang, Yue Wang
{"title":"Frontier molecular orbital weighted model based networks for revealing organic delayed fluorescence efficiency","authors":"Zhaoming He, Hai Bi, Baoyan Liang, Zhiqiang Li, Heming Zhang, Yue Wang","doi":"10.1038/s41377-024-01713-w","DOIUrl":null,"url":null,"abstract":"<p>Free of noble-metal and high in unit internal quantum efficiency of electroluminescence, organic molecules with thermally activated delayed fluorescence (TADF) features pose the potential to substitute metal-based phosphorescence materials and serve as the new-generation emitters for the mass production of organic light emitting diodes (OLEDs) display. Predicting the function of TADF emitters beyond classic chemical synthesis and material characterization experiments remains a great challenge. The advances in deep learning (DL) based artificial intelligence (AI) offer an exciting opportunity for screening high-performance TADF materials through efficiency evaluation. However, data-driven material screening approaches with the capacity to access the excited state properties of TADF emitters remain extremely difficult and largely unaddressed. Inspired by the fundamental principle that the excited state properties of TADF molecules are strongly dependent on their D-A geometric and electronic structures, we developed the Electronic Structure-Infused Network (ESIN) for TADF emitter screening. Designed with capacities of accurate prediction of the photoluminescence quantum yields (PLQYs) of TADF molecules based on elemental molecular geometry and orbital information and integrated with frontier molecular orbitals (FMOs) weight-based representation and modeling features, ESIN is a promising interpretable tool for emission efficiency evaluation and molecular design of TADF emitters.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"21 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01713-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Free of noble-metal and high in unit internal quantum efficiency of electroluminescence, organic molecules with thermally activated delayed fluorescence (TADF) features pose the potential to substitute metal-based phosphorescence materials and serve as the new-generation emitters for the mass production of organic light emitting diodes (OLEDs) display. Predicting the function of TADF emitters beyond classic chemical synthesis and material characterization experiments remains a great challenge. The advances in deep learning (DL) based artificial intelligence (AI) offer an exciting opportunity for screening high-performance TADF materials through efficiency evaluation. However, data-driven material screening approaches with the capacity to access the excited state properties of TADF emitters remain extremely difficult and largely unaddressed. Inspired by the fundamental principle that the excited state properties of TADF molecules are strongly dependent on their D-A geometric and electronic structures, we developed the Electronic Structure-Infused Network (ESIN) for TADF emitter screening. Designed with capacities of accurate prediction of the photoluminescence quantum yields (PLQYs) of TADF molecules based on elemental molecular geometry and orbital information and integrated with frontier molecular orbitals (FMOs) weight-based representation and modeling features, ESIN is a promising interpretable tool for emission efficiency evaluation and molecular design of TADF emitters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second High-fidelity light-field display with enhanced information utilization by modulating chrominance and luminance separately Polarization-controlled chiral transport Frontier molecular orbital weighted model based networks for revealing organic delayed fluorescence efficiency Real-time holographic camera for obtaining real 3D scene hologram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1